Skip to main content
Log in

Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Continuous mechanoluminescence (ML) fibers and fiber-woven textiles have the potential to serve as new wearable devices for sensors, healthcare, human—computer interfacing, and Internet of Things. Considering the demands on wearability and adaptability for the ML textiles, it is essential to realize the continuous synthesis of fiber, while maintaining a desired small diameter. Here, we develop a novel adhere-coating method to fabricate ML composite fiber, consisting of a thin polyurethane (PU) core and ZnS:Cu/polydimethylsiloxane (PDMS) shell, with the outer diameter of 120 µm. By diluting PDMS to tune the thickness of liquid coating layer, droplets formation has been effectively prevented. The composite fiber exhibits a smooth surface structure and superior ML performances, including high brightness, excellent flexibility, and stability. In addition, a weft knitting textile fabricated by the continuous ML fiber can be easily delighted by manually stretching, and the ML fibers can emit visible signals upon human motion stimuli when woven into commercial cloth. Such continuous ultra-fine ML fibers are promising as wearable sensing devices for human motion detection and human—machine interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  2. Xiong, J. Q.; Chen, J.; Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human—robot interface. Adv. Mater. 2021, 33, 2002640.

    Article  CAS  Google Scholar 

  3. Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

    Article  CAS  Google Scholar 

  4. Yan, W.; Noel, G.; Loke, G.; Meiklejohn, E.; Khudiyev, T.; Marion, J.; Rui, G. C.; Lin, J. N.; Cherston, J.; Sahasrabudhe, A. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022, 603, 616–623.

    Article  CAS  Google Scholar 

  5. He, J. Q.; Lu, C. H.; Jiang, H. B.; Han, F.; Shi, X.; Wu, J. X.; Wang, L. Y.; Chen, T. Q.; Wang, J. J.; Zhang, Y. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63.

    Article  CAS  Google Scholar 

  6. Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

    Article  CAS  Google Scholar 

  7. Wang, H. M.; Zhang, Y.; Liang, X. P.; Zhang, Y. Y. Smart fibers and textiles for personal health management. ACS Nano 2021, 15, 12497–12508.

    Article  CAS  Google Scholar 

  8. Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

    Article  CAS  Google Scholar 

  9. Zhuang, Y. X.; Xie, R. J. Mechanoluminescence rebrightening the prospects of stress sensing: A review. Adv. Mater. 2021, 33, 2005925.

    Article  CAS  Google Scholar 

  10. Zhang, J. C.; Wang, X. S.; Marriott, G.; Xu, C. N. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 2019, 103, 678–742.

    Article  CAS  Google Scholar 

  11. Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.

    Article  CAS  Google Scholar 

  12. Liao, M.; Wang, C.; Hong, Y.; Zhang, Y. F.; Cheng, X. L.; Sun, H.; Huang, X. L.; Ye, L.; Wu, J. X.; Shi, X. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 2022, 17, 372–377.

    Article  CAS  Google Scholar 

  13. Wang, L.; Fu, X. M.; He, J. Q.; Shi, X.; Chen, T. Q.; Chen, P. N.; Wang, B. J.; Peng, H. S. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.

    Article  CAS  Google Scholar 

  14. Xiong, P. X.; Peng, M. Y.; Yang, Z. M. Near-infrared mechanoluminescence crystals: A review. iScience 2021, 24, 101944.

    Article  CAS  Google Scholar 

  15. Ning, J. J.; Zheng, Y. T.; Ren, Y. T.; Li, L. P.; Shi, X. Q.; Peng, D. F.; Yang, Y. M. MgF2:Mn2+: Novel material with mechanically-induced luminescence. Sci. Bull. 2022, 67, 707–715.

    Article  CAS  Google Scholar 

  16. Peng, D. F.; Jiang, Y.; Huang, B. L.; Du, Y. Y.; Zhao, J. X.; Zhang, X.; Ma, R. H.; Golovynskyi, S.; Chen, B.; Wang, F. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv. Mater. 2020, 32, 1907747.

    Article  CAS  Google Scholar 

  17. Li, C. H.; He, Q. G.; Wang, Y.; Wang, Z. J.; Wang, Z. J.; Annapooranan, R.; Latz, M. I.; Cai, S. Q. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 2022, 13, 3914.

    Article  CAS  Google Scholar 

  18. Deng, Y.; Wei, J. Y.; Sun, J. L.; Zhang, Y. A.; Dong, L.; Shan, C. X. Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ co-doping. J. Lumin. 2020, 225, 117364.

    Article  CAS  Google Scholar 

  19. Du, Y. Y.; Jiang, Y.; Sun, T. Y.; Zhao, J. X.; Huang, B. L.; Peng, D. F.; Wang, F. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 2019, 31, 1807062.

    Article  Google Scholar 

  20. Qasem, A.; Xiong, P. X.; Ma, Z. J.; Peng, M. Y.; Yang, Z. M. Recent advances in mechanoluminescence of doped zinc sulfides. Laser Photonics Rev. 2021, 15, 2100276.

    Article  CAS  Google Scholar 

  21. Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. Self-powered motion-driven triboelectric electroluminescence textile system. ACS Appl. Mater. Interfaces 2019, 11, 5200–5207.

    Article  CAS  Google Scholar 

  22. Zhang, J.; Bao, L. K.; Lou, H. Q.; Deng, J.; Chen, A.; Hu, Y. J.; Zhang, Z. T.; Sun, X. M.; Peng, H. S. Flexible and stretchable mechanoluminescent fiber and fabric. J. Mater. Chem. C 2017, 5, 8027–8032.

    Article  CAS  Google Scholar 

  23. Ye, C.; Ren, J.; Wang, Y. L.; Zhang, W. W.; Qian, C.; Han, J.; Zhang, C. X.; Jin, K.; Buehler, M. J.; Kaplan, D. L. et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019, 1, 1411–1425.

    Article  Google Scholar 

  24. Gao, Y. Y.; Li, Z. H.; Xu, B. G.; Li, M. Q.; Jiang, C. H. Z.; Guan, X. Y.; Yang, Y. J. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 2022, 91, 106672.

    Article  CAS  Google Scholar 

  25. Fan, H. W.; Li, K. R.; Liu, X. L.; Xu, K. X.; Su, Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 28451–28460.

    Article  CAS  Google Scholar 

  26. Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

    Article  Google Scholar 

  27. Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.

    Article  CAS  Google Scholar 

  28. Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

    Article  Google Scholar 

  29. Choi, H. W.; Shin, D. W.; Yang, J. J.; Lee, S.; Figueiredo, C.; Sinopoli, S.; Ullrich, K.; Jovančić, P.; Marrani, A.; Momentè, R. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 2022, 13, 814.

    Article  CAS  Google Scholar 

  30. Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G. et al. Recent progress of fiber shaped lighting devices for smart display applications-a fibertronic perspective. Adv. Mater. 2020, 32, 1903488.

    Article  CAS  Google Scholar 

  31. Gennes, P.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin, 2004.

    Book  Google Scholar 

  32. Wang, Y.; Ren, J.; Ye, C.; Pei, Y.; Ling, S. J. Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 2021, 13, 72.

    Article  Google Scholar 

  33. He, M.; Du, W. W.; Feng, Y. M.; Li, S. J.; Wang, W.; Zhang, X.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 2021, 86, 106058.

    Article  CAS  Google Scholar 

  34. Liang, H. H.; He, Y. C.; Chen, M. H.; Jiang, L. C.; Zhang, Z. S.; Heng, X. B.; Yang, L.; Hao, Y. P.; Wei, X. M.; Gan, J. L. et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv. Intell. Syst. 2021, 3, 2100035.

    Article  Google Scholar 

  35. Yang, W. F.; Gong, W.; Gu, W.; Liu, Z. X.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered interactive fiber electronics with visual-digital synergies. Adv. Mater. 2021, 33, 2104681.

    Article  CAS  Google Scholar 

  36. Jeong, S. M.; Song, S.; Seo, H. J.; Choi, W. M.; Hwang, S. H.; Lee, S. G.; Lim, S. K. Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile. Adv. Sustainable Syst. 2017, 1, 1700126.

    Article  Google Scholar 

  37. Mead-Hunter, R.; King, A. J. C.; Mullins, B. J. Plateau Rayleigh instability simulation. Langmuir 2012, 28, 6731–6735.

    Article  CAS  Google Scholar 

  38. Hou, B.; Yi, L. Y.; Li, C.; Zhao, H.; Zhang, R.; Zhou, B.; Liu, X. G. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 2022, 5, 682–693.

    Article  Google Scholar 

  39. Wu, Y. Y.; Mechael, S. S.; Carmichael, T. B. Wearable e-textiles using a textile-centric design approach. Acc. Chem. Res. 2021, 54, 4051–4064.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U22A2077 and 11974317), Henan Science Fund for Distinguished Young Scholars (No. 212300410020), Key Project of Henan Higher Education (No. 21A140001), and the Zhengzhou University Physics Discipline Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong-Xin Shan or Lin Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Deng, Y., Li, N. et al. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res. 16, 9379–9386 (2023). https://doi.org/10.1007/s12274-023-5587-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5587-0

Keywords

Navigation