Skip to main content
Log in

Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion

  • Mini Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance. Three-dimensional (3D) self-supported amorphous nanomaterials have attracted great enthusiasm as the cornerstone for building high-performance nanodevices. In particular, tremendous efforts have been devoted to the design, fabrication, and evaluation of self-supported amorphous nanomaterials as electrodes for energy storage and conversion devices in the past decade. However, the electrochemical performance of devices assembled with 3D self-supported amorphous nanomaterials still remains to be dramatically promoted to satisfy the demands for more practical applications. In this review, we aim to outline the achievements made in recent years in the development of 3D self-supported amorphous nanomaterials for a broad range of energy storage and conversion processes. We firstly summarize different synthetic strategies employed to synthesize 3D nanomaterials and to tailor their composition, morphology, and structure. Then, the performance of these 3D self-supported amorphous nanomaterials in their corresponding energy-related reactions is highlighted. Finally, we draw out our comprehensive understanding towards both challenges and prospects of this promising field, where valuable guidance and inspiration will surely facilitate further development of 3D self-supported amorphous nanomaterials, thus enabling more highly efficient energy storage and conversion devices that play a key role in embracing a sustainable energy future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohtadi, R.; Orimo, S. I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2017, 2, 16091.

    Google Scholar 

  2. Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519.

    CAS  Google Scholar 

  3. Trogadas, P.; Coppens, M. O. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 2020, 49, 3107–3141.

    CAS  Google Scholar 

  4. Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

    CAS  Google Scholar 

  5. Attia, P. M.; Grover, A.; Jin, N.; Severson, K. A.; Markov, T. M.; Liao, Y. H.; Chen, M. H.; Cheong, B.; Perkins, N.; Yang, Z. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402.

    CAS  Google Scholar 

  6. Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

    CAS  Google Scholar 

  7. Hammes-Schiffer, S.; Galli, G. Integration of theory and experiment in the modelling of heterogeneous electrocatalysis. Nat. Energy 2021, 6, 700–705.

    Google Scholar 

  8. Jung, S. M.; Yun, S. W.; Kim, J. H.; You, S. H.; Park, J.; Lee, S.; Chang, S. H.; Chae, S. C.; Joo, S. H.; Jung, Y. et al. Selective electrocatalysis imparted by metal-insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 2020, 3, 639–648.

    CAS  Google Scholar 

  9. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  10. Fang, C. X.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

    CAS  Google Scholar 

  11. Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J. F.; Shi, Y.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

    CAS  Google Scholar 

  12. Chen, L.; Wang, N.; Zhang, Z. F.; Yu, H. F.; Wu, J.; Deng, S. Q.; Liu, H.; Qi, H.; Chen, J. Local diverse polarization optimized comprehensive energy-storage performance in lead-free superparaelectrics. Adv. Mater. 2022, 34, 2205787.

    CAS  Google Scholar 

  13. Chen, L.; Deng, S. Q.; Liu, H.; Wu, J.; Qi, H.; Chen, J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 2022, 13, 3089.

    CAS  Google Scholar 

  14. Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

    CAS  Google Scholar 

  15. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 134, e202213318.

    Google Scholar 

  16. Comer, B. M.; Fuentes, P.; Dimkpa, C. O.; Liu, Y. H.; Fernandez, C. A.; Arora, P.; Realff, M.; Singh, U.; Hatzell, M. C.; Medford, A. J. Prospects and challenges for solar fertilizers. Joule 2019, 3, 1578–1605.

    CAS  Google Scholar 

  17. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  18. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  19. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    CAS  Google Scholar 

  20. Sun, H. T.; Zhu, J.; Baumann, D.; Peng, L. L.; Xu, Y. X.; Shakir, I.; Huang, Y.; Duan, X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2019, 4, 45–60.

    Google Scholar 

  21. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  22. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    CAS  Google Scholar 

  23. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 134, e202115735.

    Google Scholar 

  24. Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

    CAS  Google Scholar 

  25. Han, X.; Wu, G.; Du, J. Y.; Pi, J. L.; Yan, M. Y.; Hong, X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem. Commun. 2022, 58, 223–237.

    CAS  Google Scholar 

  26. Taloni, A.; Vodret, M.; Costantini, G.; Zapperi, S. Size effects on the fracture of microscale and nanoscale materials. Nat. Rev. Mater. 2018, 3, 211–224.

    Google Scholar 

  27. Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

    CAS  Google Scholar 

  28. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    CAS  Google Scholar 

  29. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

    CAS  Google Scholar 

  30. Chi, W. G.; Banerjee, S. K. Application of perovskite quantum dots as an absorber in perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202112412.

    CAS  Google Scholar 

  31. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  32. Zhang, G. Q.; Sewell, C. D.; Zhang, P. X.; Mi, H. W.; Lin, Z. Q. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020, 71, 104645.

    CAS  Google Scholar 

  33. Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

    CAS  Google Scholar 

  34. Wang, P. C.; Wang, B. G. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 59593–59617.

    CAS  Google Scholar 

  35. Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371.

    Google Scholar 

  36. Zhao, H. P.; Lei, Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 2020, 10, 2001460.

    CAS  Google Scholar 

  37. Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

    CAS  Google Scholar 

  38. Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1700005.

    Google Scholar 

  39. Liu, S. Q.; Tang, Z. R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075.

    CAS  Google Scholar 

  40. Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

    CAS  Google Scholar 

  41. Zhao, J. X.; Ren, X.; Ma, H. M.; Sun, X.; Zhang, Y.; Yan, T.; Wei, Q.; Wu, D. Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2017, 5, 10093–10098.

    CAS  Google Scholar 

  42. Yang, L.; Guo, Z. L.; Huang, J.; Xi, Y. N.; Gao, R. J.; Su, G.; Wang, W.; Cao, L. X.; Dong, B. H. Vertical growth of 2D amorphous FePn4 nanosheet on Ni foam: Outer and inner structural design for superior water splitting. Adv. Mater. 2017, 29, 1704574.

    Google Scholar 

  43. Xi, Y. N.; Dong, B. H.; Dong, Y. N.; Mao, N.; Ding, L.; Shi, L.; Gao, R. J.; Liu, W.; Su, G.; Cao, L. X. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 2016, 28, 1355–1362.

    CAS  Google Scholar 

  44. He, T.; Zu, L. H.; Zhang, Y.; Mao, C. L.; Xu, X. X.; Yang, J. H.; Yang, S. H. Amorphous semiconductor nanowires created by site-specific heteroatom substitution with significantly enhanced photoelectrochemical performance. ACS Nano 2016, 10, 7882–7891.

    CAS  Google Scholar 

  45. Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 2019, 19, 1186.

    CAS  Google Scholar 

  46. Fashu, S.; Khan, R. Recent work on electrochemical deposition of Zn-Ni(-X) alloys for corrosion protection of steel. Anti-Corros. Method. Mater. 2019, 66, 45–60.

    CAS  Google Scholar 

  47. Bernasconi, R.; Magagnin, L. Review—Ruthenium as diffusion barrier layer in electronic interconnects: Current literature with a focus on electrochemical deposition methods. J. Electrochem. Soc. 2019, 166, D3219–D3225.

    CAS  Google Scholar 

  48. Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 163904.

    Google Scholar 

  49. Yoon, S.; Yun, J. Y.; Lim, J. H.; Yoo, B. Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. J. Alloys Compd. 2017, 693, 964–969.

    CAS  Google Scholar 

  50. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    CAS  Google Scholar 

  51. Gao, Y. Q.; Li, H. B.; Yang, G. W. Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. J. Appl. Phys. 2016, 119, 034902.

    Google Scholar 

  52. Wu, Y. H.; Han, M. G. Electrodeposited Fe-P nanowire arrays in hard-anodic aluminum oxide templates with controllable magnetic properties by thermal annealing. J. Alloys Compd. 2016, 688, 783–789.

    CAS  Google Scholar 

  53. Wang, Y.; Ni, Y. M.; Wang, X.; Zhang, N.; Li, P. H.; Dong, J.; Liu, B.; Liu, J. H.; Cao, M. H.; Hu, C. W. Template electro-etching-mediated FeOOH nanotubes as highly efficient photoactive electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5718–5725.

    CAS  Google Scholar 

  54. Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 2008, 20, 4135–4139.

    CAS  Google Scholar 

  55. Fan, R.; Chen, X. Y.; Wang, Z. H.; Custer, D.; Wan, J. D. Flow-regulated growth of titanium dioxide (TiO2) nanotubes in microfluidics. Small 2017, 13, 1701154.

    Google Scholar 

  56. Yu, D. L.; Zhu, X. F.; Xu, Z.; Zhong, X. M.; Gui, Q. F.; Song, Y.; Zhang, S. Y.; Chen, X. Y.; Li, D. D. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 2014, 6, 8001–8005.

    CAS  Google Scholar 

  57. Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

    CAS  Google Scholar 

  58. Huynh, M.; Shi, C. Y.; Billinge, S. J. L.; Nocera, D. G. Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc. 2015, 137, 14887–14904.

    CAS  Google Scholar 

  59. Liang, W. H.; Tang, Y. K.; Liu, L.; Gao, Y.; Zeng, X. Y. Physical forces inducing thin amorphous carbon nanotubes derived from polymer nanotube/SiO2 hybrids with superior rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36985–36990.

    CAS  Google Scholar 

  60. Feng, J.; Yin, Y. D. Self-templating approaches to hollow nanostructures. Adv. Mater. 2019, 31, 1802349.

    Google Scholar 

  61. Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

    Google Scholar 

  62. Fang, M.; Tan, X. L.; Liu, M.; Gong, X. X.; Zhang, L. D.; Fei, G. T. High density near amorphous InSb nanowire arrays and its photoelectric performance. J. Alloys Compd. 2015, 626, 35–41.

    CAS  Google Scholar 

  63. Zhang, L. Y.; Xue, D. S.; Fen, J. Magnetic properties of amorphous β-FeOOH nanowire arrays. J. Magn. Magn. Mater. 2006, 305, 228–232.

    CAS  Google Scholar 

  64. Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk—shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. 2010, 49, 4981–4985.

    CAS  Google Scholar 

  65. Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

    Google Scholar 

  66. Huang, M.; Xi, B. J.; Mi, L. W.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Rationally designed three-layered TiO2@amorphous MoS3@carbon hierarchical microspheres for efficient potassium storage. Small 2022, 18, 2107819.

    CAS  Google Scholar 

  67. Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 2001, 78, 407–409.

    CAS  Google Scholar 

  68. Zhao, Y. S.; Di, C.; Yang, W.; Yu, G.; Liu, Y.; Yao, J. Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 2006, 16, 1985–1991.

    CAS  Google Scholar 

  69. Liu, Y. H.; Song, H. M.; Bei, Z. M.; Zhou, L.; Zhao, C.; Ooi, B. S.; Gan, Q. Q. Ultra-thin dark amorphous TiOx hollow nanotubes for full spectrum solar energy harvesting and conversion. Nano Energy 2021, 84, 105872.

    CAS  Google Scholar 

  70. Zhang, X.; Zhang, Y.; Yu, B. B.; Yin, X. L.; Jiang, W. J.; Jiang, Y.; Hu, J. S.; Wan, L. J. Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 19277–19281.

    CAS  Google Scholar 

  71. Xiong, B. W.; Zhang, T. T.; Zhao, Y. L.; Wen, T.; Zhang, Q. W.; Bao, S. X.; Song, S. X. Removal of Cu(II) from wastewater by using mechanochemically activated carbonate-based tailings through chemical precipitation. Environ. Sci. Pollut. Res. 2019, 26, 35198–35207.

    CAS  Google Scholar 

  72. Kondalkar, M.; Fegade, U.; Attarde, S.; Ingle, S. Phosphate removal, mechanism, and adsorption properties of Fe-Mn-Zn oxide trimetal alloy nanocomposite fabricated via co-precipitation method. Sep. Sci. Technol. 2019, 54, 2682–2694.

    CAS  Google Scholar 

  73. Wang, Q.; Yu, J. X.; Chen, X. Y.; Du, D. T.; Wu, R. R.; Qu, G. Z.; Guo, X. T.; Jia, H. Z.; Wang, T. C. Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation. J. Environ. Manag. 2019, 248, 109237.

    CAS  Google Scholar 

  74. Ai, Y. J.; Liu, L.; Zhang, C.; Qi, L.; He, M. Q.; Liang, Z.; Sun, H. B.; Luo, G. A.; Liang, Q. L. Amorphous flowerlike goethite FeOOH hierarchical supraparticles: Superior capability for catalytic hydrogenation of nitroaromatics in water. ACS Appl. Mater. Interfaces 2018, 10, 32180–32191.

    CAS  Google Scholar 

  75. Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater. Today Energy 2020, 18, 100548.

    CAS  Google Scholar 

  76. Wen, X.; Zhang, Q. M.; Shao, Z. Magnetron sputtering for ZnO: Ga scintillation film production and its application research status in nuclear detection. Crystals 2019, 4, 263.

    Google Scholar 

  77. Cao, L. M.; Zhang, Z.; Sun, L. L.; Gao, C. X.; He, M.; Wang, Y. Q.; Li, Y. C.; Zhang, X. Y.; Li, G.; Zhang, J. et al. Well-aligned boron nanowire arrays. Adv. Mater. 2001, 13, 1701–1704.

    CAS  Google Scholar 

  78. Hawkeye, M. M.; Brett, M. J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 2007, 25, 1317–1335.

    CAS  Google Scholar 

  79. Chetri, P.; Dhar, J. C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector. Appl. Phys. A 2019, 125, 286.

    CAS  Google Scholar 

  80. Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415.

    CAS  Google Scholar 

  81. Chen, H.; Huang, X. X.; Zhou, L. J.; Li, G. D.; Fan, M. H.; Zou, X. X. Electrospinning synthesis of bimetallic nickel-iron oxide/carbon composite nanofibers for efficient water oxidation electrocatalysis. ChemCatChem 2016, 8, 992–1000.

    CAS  Google Scholar 

  82. Lee, S. W.; Kim, H.; Kim, M. S.; Youn, H. C.; Kang, K.; Cho, B. W.; Roh, K. C.; Kim, K. B. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261–268.

    CAS  Google Scholar 

  83. Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112.

    CAS  Google Scholar 

  84. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    CAS  Google Scholar 

  85. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  86. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    CAS  Google Scholar 

  87. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.

    Google Scholar 

  88. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 61, e202212335.

    Google Scholar 

  89. Ren, X.; Wu, D.; Ge, R. X.; Sun, X.; Ma, H. M.; Yan, T.; Zhang, Y.; Du, B.; Wei, Q.; Chen, L. Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 2018, 11, 2024–2033.

    CAS  Google Scholar 

  90. Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

    CAS  Google Scholar 

  91. Li, S. L.; Li, Z. C.; Ma, R. G.; Gao, C. L.; Liu, L. L.; Hu, L. P.; Zhu, J. L.; Sun, T. M.; Tang, Y. F.; Liu, D. M. et al. A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3773–3780.

    CAS  Google Scholar 

  92. Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

    CAS  Google Scholar 

  93. Huo, C. Z.; Cao, X. X.; Ye, Z. X.; Li, Y.; Lu, T. B. Hierarchical bimetallic electrocatalyst with amorphous SnO layer for highly efficient electroreduction of CO2. ChemCatChem 2021, 13, 4931–4936.

    CAS  Google Scholar 

  94. Yang, R.; Zeng, Z. P.; Peng, Z.; Xie, J. F.; Huang, Y. Y.; Wang, Y. B. Amorphous urchin-like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+ products. J. Energy Chem. 2021, 61, 290–296.

    CAS  Google Scholar 

  95. Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 66, 4275–4281.

    Google Scholar 

  96. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    CAS  Google Scholar 

  97. Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. 2018, 57, 6073–6076.

    CAS  Google Scholar 

  98. Cheng, Y. H.; Li, D. M.; Shi, L.; Xiang, Z. H. Efficient unitary oxygen electrode for air-based flow batteries. Nano Energy 2018, 47, 361–367.

    CAS  Google Scholar 

  99. Yuan, G.; Wang, L.; Zhang, X. W.; Wang, Q. F. Self-supported Pt nanoflakes-doped amorphous Ni(OH)2 on Ni foam composite electrode for efficient and stable methanol oxidation. J. Colloid Interface Sci. 2019, 536, 189–195.

    CAS  Google Scholar 

  100. Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 4, 4036.

    Google Scholar 

  101. Qin, Q.; Xie, J.; Dong, Q. Z.; Yu, G.; Chen, H. Surfactant-free fabrication of porous PdSn alloy networks by self-assembly as superior freestanding electrocatalysts for formic acid oxidation. New J. Chem. 2019, 43, 19242–19252.

    CAS  Google Scholar 

  102. Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 2019, 372, 299–310.

    CAS  Google Scholar 

  103. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    CAS  Google Scholar 

  104. Zhao, W. L.; Zhu, G. L.; Zhao, W.; Lin, T. Q.; Xu, F. F.; Huang, F. Q. The hierarchical structure of cubic K0.5La0.5TiO3 layers and enhanced photocatalytic hydrogen evolution after surface acidification. Dalton Trans. 2015, 44, 18665–18670.

    CAS  Google Scholar 

  105. Wang, X. R.; Yang, K. X.; Ding, S. S.; Li, Y. Y.; Zhou, B. X.; Huang, G. F.; Hu, W. Y.; Huang, W. Q. 2D amorphous CoO incorporated g-C3N4 nanotubes for improved photocatalytic performance. Phys. Status Solidi-Res. 2021, 15, 2100254.

    CAS  Google Scholar 

  106. Dong, S.; Liu, W.; Liu, S.; Li, F.; Hou, J.; Hao, R.; Bai, X.; Zhao, H.; Liu, J.; Guo, L. Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction. Mater. Today Nano 2022, 17, 100157.

    CAS  Google Scholar 

  107. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    CAS  Google Scholar 

  108. Kang, Y. Q.; Henzie, J.; Gu, H. J.; Na, J.; Fatehmulla, A.; Shamsan, B. S. A.; Aldhafiri, A. M.; Farooq, W. A.; Bando, Y.; Asahi, T. et al. Mesoporous metal-metalloid amorphous alloys: The first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small 2020, 16, 1906707.

    CAS  Google Scholar 

  109. Kang, Y. Q.; Du, H. R.; Jiang, B.; Li, H.; Guo, Y. N.; Amin, M. A.; Sugahara, Y.; Asahi, T.; Li, H. X.; Yamauchi, Y. Microwave one-pot synthesis of CNT-supported amorphous Ni-P alloy nanoparticles with enhanced hydrogenation performance. J. Mater. Chem. A 2022, 10, 6560–6568.

    CAS  Google Scholar 

  110. Liang, J. Z.; Ge, Y. Y.; He, Z.; Yun, Q. B.; Liu, G. G.; Lu, S. Y.; Zhai, L.; Huang, B.; Zhang, H. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-021-4007-6.

  111. Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

    CAS  Google Scholar 

  112. Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

    CAS  Google Scholar 

  113. Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 58, 44–59.

    CAS  Google Scholar 

  114. Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.

    CAS  Google Scholar 

  115. Fu, S. T.; Chen, J.; Wang, X. X.; He, Q.; Tong, S. F.; Wu, M. M. Free-standing crystalline@amorphous core—shell nanoarrays for efficient energy storage. Small 2020, 16, 2000040.

    CAS  Google Scholar 

  116. Li, H. X.; Xu, M.; Gao, C. H.; Zhang, W.; Zhang, Z. A.; Lai, Y. Q.; Jiao, L. F. Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Storage Mater. 2020, 26, 325–333.

    Google Scholar 

  117. Li, H. X.; Jin, T.; Chen, X. B.; Lai, Y. Q.; Zhang, Z. A.; Bao, W. Z.; Jiao, L. F. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2018, 8, 1801418.

    Google Scholar 

  118. Chen, J.; Fu, Y. L.; Sun, F.; Hu, Z. G.; Wang, X.; Zhang, T.; Zhang, F. S.; Wu, X. L.; Chen, H. S.; Cheng, G. A. et al. Oxygen vacancies and phase tuning of self-supported black TiO2−x nanotube arrays for enhanced sodium storage. Chem. Eng. J. 2020, 400, 125784.

    CAS  Google Scholar 

  119. Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

    CAS  Google Scholar 

  120. Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.

    Google Scholar 

  121. Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

    CAS  Google Scholar 

  122. Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

    CAS  Google Scholar 

  123. Hao, Z. Q.; Cao, J. P.; Dang, Y. L.; Wu, Y.; Zhao, X. Y.; Wei, X. Y. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance. ACS Sustain. Chem. Eng. 2019, 7, 4037–4046.

    CAS  Google Scholar 

  124. Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3−δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.

    CAS  Google Scholar 

  125. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

    CAS  Google Scholar 

  126. Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Guo, H. H.; Feng, J. K.; Qian, Y. T. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223–233.

    Google Scholar 

  127. Fang, Y. J.; Zeng, Y. X.; Jin, Q.; Lu, X. F.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Nitrogen-doped amorphous Zn-carbon multichannel fibers for stable lithium metal anodes. Angew. Chem., Int. Ed. 2021, 60, 8515–8520.

    CAS  Google Scholar 

  128. Xue, P.; Sun, C.; Li, H. P.; Liang, J. J.; Lai, C. Superlithiophilic amorphous SiO2-TiO2 distributed into porous carbon skeleton enabling uniform lithium deposition for stable lithium metal batteries. Adv. Sci. 2019, 6, 1900943.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52272181, 51872016, and 52201261) and China Postdoctoral Science Foundation (Nos. 2020TQ0023 and 2020M680295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binbin Jia, Di Liu or Lidong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, Y., Bai, H. et al. Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion. Nano Res. 16, 10597–10616 (2023). https://doi.org/10.1007/s12274-023-5571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5571-8

Keywords

Navigation