Skip to main content
Log in

Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. H. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-022-5068-x.

  2. Su, X.; Hao, D. Z.; Sun, M. Y.; Wei, T. S.; Xu, D. K.; Ai, X. C.; Guo, X. L.; Zhao, T.; Jiang, L. Nature sunflower stalk pith with zwitterionic hydrogel coating for highly efficient and sustainable solar evaporation. Adv. Funct. Mater. 2022, 32, 2108135.

    CAS  Google Scholar 

  3. Fillet, R.; Nicolas, V.; Fierro, V.; Celzard, A. A review of natural materials for solar evaporation. Sol. Energy Mater. Sol. Cells 2021, 219, 110814.

    CAS  Google Scholar 

  4. Allahbakhsh, A. Nitrogen-doped graphene quantum dots hydrogels for highly efficient solar steam generation. Desalination 2021, 517, 115264.

    CAS  Google Scholar 

  5. Peng, S.; Xu, L. Q.; Deng, S. H.; Mao, Y. F.; Zhao, Z. Y.; Wu, D. L. Non-covalent bond-regulated solar evaporation modulator: Facilitative hydration domains originated via a homogeneous polymeric network. ACS Appl. Mater. Interfaces 2022, 14, 46945–46957.

    CAS  Google Scholar 

  6. Zhao, S. J.; Xia, M. M.; Zhang, Y. H.; Hasi, Q. M.; Xu, J. J.; Chen, L. H. Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater Sol. Cells 2021, 225, 111058.

    CAS  Google Scholar 

  7. Xu, H.; Xing, H. Y.; Chen, S.; Wang, Q.; Dong, L.; Hu, K. D.; Wang, B.; Xue, J. Z.; Lu, Y. Oak-inspired anti-biofouling shape-memory unidirectional scaffolds with stable solar water evaporation performance. Nanoscale 2022, 14, 7493–7501.

    CAS  Google Scholar 

  8. Xu, X. T.; Wan, X. Z.; Li, H. N.; Zhang, Y. K.; He, W.; Wang, S. L.; Wang, M.; Hou, X.; Wang, S. T. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Res. 2022, 15, 5653–5662.

    CAS  Google Scholar 

  9. Li, Y. G.; Sun, K. Y.; Kou, Y.; Liu, H. Q.; Wang, L.; Yin, N.; Dong, H. S.; Shi, Q. One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chem. Eng. J 2022, 429, 132439.

    CAS  Google Scholar 

  10. Li, J. L.; Wang, X. Y.; Lin, Z. H.; Xu, N.; Li, X. Q.; Liang, J.; Zhao, W.; Lin, R. X.; Zhu, B.; Liu, G. L. et al. Over 10 kg·m−2·h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 2020, 4, 928–937.

    CAS  Google Scholar 

  11. Ku, B. J.; Lee, B. M.; Kim, D. H.; Mnoyan, A.; Hong, S. K.; Go, K. S.; Kwon, E. H.; Kim, S. H.; Choi, J. H.; Lee, K. Photothermal fabrics for efficient oil-spill remediation via solar-driven evaporation combined with adsorption. ACS Appl. Mater. Interfaces 2021, 13, 13106–13113.

    CAS  Google Scholar 

  12. Geng, H. Y.; Xu, Q.; Wu, M. M.; Ma, H. Y.; Zhang, P. P.; Gao, T. T.; Qu, L. T.; Ma, T. B.; Li, C. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat. Commun. 2019, 10, 1512.

    Google Scholar 

  13. Kiriarachchi, H. D.; Awad, F. S.; Hassan, A. A.; Bobb, J. A.; Lin, A.; El-Shall, M. S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale 2018, 10, 18531–18539.

    CAS  Google Scholar 

  14. Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

    Google Scholar 

  15. Li, Z. Y.; Ma, X.; Chen, D. K.; Wan, X. Y.; Wang, X. B.; Fang, Z.; Peng, X. S. Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination. Adv. Sci. 2021, 8, 2004552.

    CAS  Google Scholar 

  16. Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 2018, 10, 6186–6193.

    CAS  Google Scholar 

  17. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    CAS  Google Scholar 

  18. Deng, W.; Fan, T. Z.; Li, Y. Water wave vibration-promoted solar evaporation with super high productivity. Nano Energy 2022, 92, 106745.

    CAS  Google Scholar 

  19. Zhang, X. Y.; Li, T. Y.; Liao, W. L.; Chen, D. Z.; Deng, Z. W.; Liu, X.; Shang, B. A water supply tunable bilayer evaporator for high-quality solar vapor generation. Nanoscale 2022, 14, 7913–7918.

    CAS  Google Scholar 

  20. Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

    CAS  Google Scholar 

  21. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    CAS  Google Scholar 

  22. Xue, J. L.; Zhao, F.; Hu, C. G.; Zhao, Y.; Luo, H. X.; Dai, L. M.; Qu, L. T. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 2016, 26, 8784–8792.

    CAS  Google Scholar 

  23. Peng, H. Y.; Wang, D.; Fu, S. H. Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS Appl. Mater. Interfaces 2021, 13, 38405–38415.

    CAS  Google Scholar 

  24. Shao, C. X.; Zhao, Y.; Qu, L. T. Tunable graphene systems for water desalination. ChemNanoMat 2020, 6, 1028–1048.

    CAS  Google Scholar 

  25. Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

    Google Scholar 

  26. Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309.

    CAS  Google Scholar 

  27. Yang, L.; Zou, Y.; Xia, W.; Li, H. T.; He, X. Y.; Zhou, Y.; Liu, X. H.; Zhang, C. Q.; Li, Y. W. Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Res. 2021, 14, 969–975.

    CAS  Google Scholar 

  28. Yang, H.; Sun, Y. H.; Peng, M. W.; Cai, M. J.; Zhao, B.; Li, D.; Liang, Z. Q.; Jiang, L. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity. ACS Nano 2022, 16, 2511–2520.

    CAS  Google Scholar 

  29. Huang, C. H.; Huang, J. X.; Chiao, Y. H.; Chang, C. M.; Hung, W. S.; Lue, S. J.; Wang, C. F.; Hu, C. C.; Lee, K. R.; Pan, H. H. et al. Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 2021, 31, 2010422.

    CAS  Google Scholar 

  30. Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

    Google Scholar 

  31. Hu, X. Z.; Zhu, J. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv. Funct. Mater. 2020, 30, 1907234.

    CAS  Google Scholar 

  32. Guo, Y. H.; Zhou, X. Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. H. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019, 13, 7913–7919.

    CAS  Google Scholar 

  33. Ishida, N.; Kamae, Y.; Ishizu, K.; Kamino, Y.; Naruse, H.; Murakami, M. Sustainable system for hydrogenation exploiting energy derived from solar light. J. Am. Chem. Soc. 2021, 143, 2217–2220.

    CAS  Google Scholar 

  34. Trinh, V. H.; Nguyen, N. A.; Omelianovych, O.; Dao, V. D.; Yoon, I.; Choi, H. S.; Keidar, M. Sustainable desalination device capable of producing freshwater and electricity. Desalination 2022, 535, 115820.

    CAS  Google Scholar 

  35. He, W.; Zhou, L.; Wang, M.; Cao, Y.; Chen, X. M.; Hou, X. Structure development of carbon-based solar-driven water evaporation systems. Sci. Bull. 2021, 66, 1472–1483.

    CAS  Google Scholar 

  36. Ding, S. J.; Ma, L.; Feng, J. R.; Chen, Y. L.; Yang, D. J.; Wang, Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15, 2715–2721.

    CAS  Google Scholar 

  37. Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376.

    CAS  Google Scholar 

  38. Zhao, X. T.; Wang, T. Y.; Wang, R. X.; Lan, Y. Y.; Jiang, Y. Y.; Pan, J. F. Superwetting photothermal membranes enabled by polyphenol-mediated nanostructured coating with raspberry-like architectures for solar-driven interfacial evaporation. Desalination 2022, 542, 116046.

    CAS  Google Scholar 

  39. Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

    CAS  Google Scholar 

  40. Yan, X. L.; Lyu, S. Z.; Xu, X. Q.; Chen, W. B.; Shang, P. N.; Yang, Z. F.; Zhang, G.; Chen, W. H.; Wang, Y. P.; Chen, L. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation. Angew. Chem., Int. Ed. 2022, 61, e202201900.

    CAS  Google Scholar 

  41. Zhao, F.; Zhou, X. Y.; Liu, Y.; Shi, Y.; Dai, Y. F.; Yu, G. H. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 2019, 31, 1806446.

    Google Scholar 

  42. Zhou, X. Y.; Zhang, P. P.; Zhao, F.; Yu, G. H. Super moisture absorbent gels for sustainable agriculture via atmospheric water irrigation. ACS Mater. Lett. 2020, 2, 1419–1422.

    CAS  Google Scholar 

  43. Li, X. Q.; Min, X. Z.; Li, J. L.; Xu, N.; Zhu, P. C.; Zhu, B.; Zhu, S. N.; Zhu, J. Storage and recycling of interfacial solar steam enthalpy. Joule 2018, 2, 2477–2484.

    Google Scholar 

  44. Li, Z. T.; Xu, X. T.; Sheng, X. R.; Lin, P.; Tang, J.; Pan, L. K.; Kaneti, Y. V.; Yang, T.; Yamauchi, Y. Solar-powered sustainable water production: State-of-the-art technologies for sunlight-energy-water nexus. ACS Nano 2021, 15, 12535–12566.

    CAS  Google Scholar 

  45. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Google Scholar 

  46. Wang, L.; Feng, Y. J.; Wang, K. Y.; Liu, G. H. Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 2021, 87, 106158.

    CAS  Google Scholar 

  47. Zhou, X. Y.; Zhao, F.; Zhang, P. P.; Yu, G. H. Solar water evaporation toward water purification and beyond. ACS Mater. Lett. 2021, 3, 1112–1129.

    CAS  Google Scholar 

  48. Peng, Y. Y.; Zhao, W. W.; Ni, F.; Yu, W. J.; Liu, X. Q. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 2021, 15, 19490–19502.

    CAS  Google Scholar 

  49. Zhu, Y. Q.; Tian, G. L.; Liu, Y. W.; Li, H. X.; Zhang, P. C.; Zhan, L.; Gao, R.; Huang, C. Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer. Adv. Sci. 2021, 8, 2101727.

    CAS  Google Scholar 

  50. Ren, J. X.; Ding, Y.; Gong, J.; Qu, J. P.; Niu, R. Simultaneous solar-driven steam and electricity generation by cost-effective, easy scale-up MnO2-based flexible membranes. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12376.

  51. Li, H. X.; Zhu, W.; Li, M.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 2021, 33, 2102258.

    CAS  Google Scholar 

  52. Qin, D. D.; Zhu, Y. J.; Yang, R. L.; Xiong, Z. C. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale 2020, 12, 6717–6728.

    CAS  Google Scholar 

  53. Wu, Y. T.; Kong, R.; Ma, C. L.; Li, L. Z.; Zheng, Y.; Lu, Y. Z.; Liang, L. L.; Pang, Y. J.; Wu, Q.; Shen, Z. H. et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation. Energy Environ. Mater. 2022, 5, 1323–1331.

    CAS  Google Scholar 

  54. Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718.

    CAS  Google Scholar 

  55. Guo, Y.; Li, C. Q.; Wei, P. L.; Hou, K.; Zhu, M. F. Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification. J. Mater. Sci. Technol. 2022, 106, 10–18.

    Google Scholar 

  56. Zhao, L. Y.; Wang, L.; Shi, J. D.; Hou, X. Y.; Wang, Q.; Zhang, Y.; Wang, Y.; Bai, N. N.; Yang, J. L.; Zhang, J. M. et al. Shape-programmable interfacial solar evaporator with salt-precipitation monitoring function. ACS Nano 2021, 15, 5752–5761.

    CAS  Google Scholar 

  57. Irshad, M. S.; Wang, X. B.; Abbasi, M. S.; Arshad, N.; Chen, Z. H.; Guo, Z. Z.; Yu, L.; Qian, J. W.; You, J.; Mei, T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem. Eng. 2021, 9, 3887–3900.

    CAS  Google Scholar 

  58. Liu, G. H.; Xu, J. L.; Wang, K. Y. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269–284.

    CAS  Google Scholar 

  59. Li, F. B.; Li, N.; Wang, S. X.; Qiao, L. F.; Yu, L. M.; Murto, P.; Xu, X. F. Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 2021, 31, 2104464.

    CAS  Google Scholar 

  60. Bai, H. Y.; Liu, N.; Hao, L.; He, P. P.; Ma, C. D.; Niu, R.; Gong, J.; Tang, T. Self-floating efficient solar steam generators constructed using super-hydrophilic N, O dual-doped carbon foams from waste polyester. Energy Environ. Mater. 2022, 5, 1204–1213.

    CAS  Google Scholar 

  61. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    CAS  Google Scholar 

  62. Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

    CAS  Google Scholar 

  63. Wang, A. H.; Liang, H. G.; Chen, F.; Tian, X. L.; Yin, S. B.; Jing, S. Y.; Tsiakaras, P. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B:Environ. 2022, 310, 121336.

    CAS  Google Scholar 

  64. Wang, W.; Yan, X. Q.; Geng, J. F.; Zhao, N.; Liu, L. Q.; Vogel, T.; Guo, Q.; Ge, L.; Luo, B.; Zhao, Y. X. Engineering a copper@polypyrrole nanowire network in the near field for plasmon-enhanced solar evaporation. ACS Nano 2021, 15, 16376–16394.

    CAS  Google Scholar 

  65. Wang, Z. G.; Yu, K.; Gong, S. J.; Mao, H. B.; Huang, R.; Zhu, Z. Q. Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 2021, 13, 16246–16258.

    CAS  Google Scholar 

  66. Meng, X. Y.; Xu, W. L.; Li, Z. H.; Yang, J. H.; Zhao, J. W.; Zou, X. X.; Sun, Y. M.; Dai, Y. Q. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2020, 2, 93–104.

    CAS  Google Scholar 

  67. Chen, G. Y.; Jiang, Z. P.; Li, A.; Chen, X. H.; Ma, Z. K.; Song, H. H. Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. J. Mater. Chem. A 2021, 9, 16805–16813.

    CAS  Google Scholar 

  68. Xiao, J. X.; Guo, Y.; Luo, W. Q.; Wang, D.; Zhong, S. K.; Yue, Y. R.; Han, C. N.; Lv, R. X.; Feng, J. B.; Wang, J. Q. et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continuous solar steam generation. Nano Energy 2021, 87, 106213.

    CAS  Google Scholar 

  69. Chen, X. B.; Li, P.; Wang, J.; Wan, J. W.; Yang, N. L.; Xu, B.; Tong, L. M.; Gu, L.; Du, J.; Lin, J. J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 2022, 15, 4117–4123.

    CAS  Google Scholar 

  70. Chen, R.; Wu, Z. J.; Zhang, T. Q.; Yu, T. C.; Ye, M. M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Adv. 2017, 7, 19849–19855.

    CAS  Google Scholar 

  71. Liu, J.; Gui, J. X.; Zhou, W. T.; Tian, X. L.; Liu, Z. X.; Wang, J. Q.; Liu, J.; Yang, L.; Zhang, P.; Huang, W. et al. Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 2021, 86, 106112.

    CAS  Google Scholar 

  72. Li, H. N.; Yang, H. C.; Zhu, C. Y.; Wu, J.; Greiner, A.; Xu, Z. K. A self-descaling Janus nanofibrous evaporator enabled by a “moving interface” for durable solar-driven desalination of hypersaline water. J. Mater. Chem. A 2022, 10, 20856–20865.

    CAS  Google Scholar 

  73. Irshad, M. S.; Wang, X. B.; Abbas, A.; Yu, F.; Li, J. H.; Wang, J. Y.; Mei, T.; Qian, J. W.; Wu, S. L.; Javed, M. Q. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon 2021, 176, 313–326.

    CAS  Google Scholar 

  74. Dao, V. D.; Vu, N. H.; Thi Dang, H. L.; Yun, S. N. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021, 85, 105979.

    CAS  Google Scholar 

  75. Su, L. F.; Ning, Y. Y.; Ma, Z. Q.; Zhang, Y. H.; Liu, C. L.; Zhang, Y. L.; Miao, L.; Zhou, J. H.; Wu, B.; Qian, J. S. Polypyrrole-reinforced N, S-doping graphene foam for efficient solar purification of wastewater. Sol. RRL 2021, 5, 2100210.

    CAS  Google Scholar 

  76. Li, C. C.; Zhu, B.; Liu, Z. X.; Zhao, J. T.; Meng, R. R.; Zhang, L. S.; Chen, Z. G. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 2022, 431, 134224.

    CAS  Google Scholar 

  77. Xiong, H.; Xie, X. W.; Wang, M.; Hou, Y. Q.; Hou, X. CVD grown carbon nanotubes on reticulated skeleton for brine desalination. Acta Phys. -Chim. Sin. 2020, 36, 1912008.

    Google Scholar 

  78. Arunkumar, T.; Lim, H. W.; Lee, S. J. A review on efficiently integrated passive distillation systems for active solar steam evaporation. Renew. Sust. Energy Rev. 2022, 155, 111894.

    CAS  Google Scholar 

  79. Zhang, P. P.; Liu, F.; Liao, Q. H.; Yao, H. Z.; Geng, H. Y.; Cheng, H. H.; Li, C.; Qu, L. T. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem., Int. Ed. 2018, 57, 16343–16347.

    CAS  Google Scholar 

  80. Wang, X. Y.; Li, X. Q.; Liu, G. L.; Li, J. L.; Hu, X. Z.; Xu, N.; Zhao, W.; Zhu, B.; Zhu, J. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem., Int. Ed. 2019, 58, 12054–12058.

    CAS  Google Scholar 

  81. Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B:Environ. 2022, 301, 120820.

    CAS  Google Scholar 

  82. Li, X. P.; Li, X. F.; Li, H. G.; Zhao, Y.; Wu, J.; Yan, S. K.; Yu, Z. Z. Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification. Adv. Funct. Mater. 2022, 32, 2110636.

    CAS  Google Scholar 

  83. Irshad, M. S.; Arshad, N.; Wang, X. B.; Li, H. R.; Javed, M. Q.; Xu, Y.; Alshahrani, L. A.; Mei, T.; Li, J. H. Intensifying solar interfacial heat accumulation for clean water generation excluding heavy metal ions and oil emulsions. Sol. RRL 2021, 5, 2100427.

    CAS  Google Scholar 

  84. Yang, L.; Li, N.; Guo, C.; He, J. T.; Wang, S. X.; Qiao, L. F.; Li, F. B.; Yu, L. M.; Wang, M.; Xu, X. F. Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chem. Eng. J. 2021, 417, 128051.

    CAS  Google Scholar 

  85. Dao, V. D.; Vu, N. H.; Yun, S. N. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324.

    CAS  Google Scholar 

  86. Dao, V. D.; Choi, H. S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2018, 2, 1700094.

    Google Scholar 

  87. Guan, W. X.; Guo, Y. H.; Yu, G. H. Carbon materials for solar water evaporation and desalination. Small 2021, 17, 2007176.

    CAS  Google Scholar 

  88. Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    CAS  Google Scholar 

  89. Wang, L. F.; Liu, D.; Jiang, L.; Ma, Y. X.; Yang, G. L.; Qian, Y. J.; Lei, W. W. Advanced 2D−2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano Energy 2022, 98, 107192.

    CAS  Google Scholar 

  90. Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 2015, 119, 25518–25528.

    CAS  Google Scholar 

  91. McMahon, J. M.; Schatz, G. C.; Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423.

    CAS  Google Scholar 

  92. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805.

    CAS  Google Scholar 

  93. Magnan, F.; Gagnon, J.; Fontaine, F. G.; Boudreau, D. Indium@silica core-shell nanoparticles as plasmonic enhancers of molecular luminescence in the UV region. Chem. Commun. 2013, 49, 9299–9301.

    CAS  Google Scholar 

  94. Kumamoto, Y.; Taguchi, A.; Honda, M.; Watanabe, K.; Saito, Y.; Kawata, S. Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photonics 2014, 1, 598–603.

    CAS  Google Scholar 

  95. Liang, J.; Liu, H. Z.; Yu, J. Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019, 8, 771–786.

    Google Scholar 

  96. Zhou, L.; Zhuang, S. D.; He, C. Y.; Tan, Y. L.; Wang, Z. L.; Zhu, J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 2017, 32, 195–200.

    Google Scholar 

  97. Chen, C. L.; Zhou, L.; Yu, J. Y.; Wang, Y. X.; Nie, S. M.; Zhu, S. N.; Zhu, J. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 2018, 51, 451–456.

    CAS  Google Scholar 

  98. Yu, J. Y.; Zhou, L.; Wang, Y.; Tan, Y. L.; Wang, Z. L.; Zhu, S. N.; Zhu, J. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis. J. Opt. 2018, 20, 034005.

    Google Scholar 

  99. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    CAS  Google Scholar 

  100. Zhu, J.; Li, J. J.; Zhao, J. W. The effect of dielectric coating on the local electric field enhancement of Au−Ag core-shell nanoparticles. Plasmonics 2015, 10, 1–8.

    Google Scholar 

  101. Yang, F.; Chen, J. X.; Ye, Z. Y.; Ding, D. W.; Myung, N. V.; Yin, Y. D. Ni-based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation. Adv. Funct. Mater. 2021, 31, 2006294.

    CAS  Google Scholar 

  102. Yuan, Y.; Dong, C. L.; Gu, J. J.; Liu, Q. L.; Xu, J.; Zhou, C. X.; Song, G. F.; Chen, W. S.; Yao, L. L.; Zhang, D. A scalable nickel-cellulose hybrid metamaterial with broadband light absorption for efficient solar distillation. Adv. Mater. 2020, 32, 1907975.

    CAS  Google Scholar 

  103. Li, W. H.; Zamani, R.; Gil, P. R.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R. A.; Parak, W. J.; Arbiol, J. et al. CuTe nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 2013, 135, 7098–7101.

    CAS  Google Scholar 

  104. Gao, M. M.; Peh, C. K.; Phan, H. T.; Zhu, L. L.; Ho, G. W. Solar absorber gel: Localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energy Mater. 2018, 8, 1800711.

    Google Scholar 

  105. Coulter, J. B.; Birnie III, D. P. Assessing tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi (B) 2018, 255, 1700393.

    Google Scholar 

  106. Shao, S. Y.; Abdu-Aguye, M.; Qiu, L.; Lai, L. H.; Liu, J.; Adjokatse, S.; Jahani, F.; Kamminga, M. E.; ten Brink, G. H.; Palstra, T. T. M. et al. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative. Energy Environ. Sci. 2016, 9, 2444–2452.

    CAS  Google Scholar 

  107. Zeiske, S.; Sandberg, O. J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat. Commun. 2021, 12, 3603.

    CAS  Google Scholar 

  108. Sun, L.; Sun, J. X.; Xiong, C. H.; Shi, X. H. Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility. Sol. Energy 2016, 135, 308–316.

    Google Scholar 

  109. Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C. Absorption coefficient of a semiconductor thin film from photoluminescence. Phys. Rev. Appl. 2018, 9, 064008.

    CAS  Google Scholar 

  110. Huang, D. L.; Yan, X. L.; Yan, M.; Zeng, G. M.; Zhou, C. Y.; Wan, J.; Cheng, M.; Xue, W. J. Graphitic carbon nitride-based heterojunction photoactive nanocomposites: Applications and mechanism insight. ACS Appl. Mater. Interfaces 2018, 10, 21035–21055.

    CAS  Google Scholar 

  111. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

    Google Scholar 

  112. Ye, M. M.; Jia, J.; Wu, Z. J.; Qian, C. X.; Chen, R.; O’Brien, P. G.; Sun, W.; Dong, Y. C.; Ozi, G. A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 2017, 7, 1601811.

    Google Scholar 

  113. Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al−Ti−O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600–608.

    CAS  Google Scholar 

  114. Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

    CAS  Google Scholar 

  115. Feng, Q.; Bu, X. T.; Wan, Z. M.; Feng, K. Y.; Deng, Q. Y.; Chen, C. C.; Li, D. G. An efficient torrefaction bamboo-based evaporator in interfacial solar steam generation. Sol. Energy 2021, 230, 1095–1105.

    Google Scholar 

  116. Fan, Y. K.; Tian, Z. Y.; Wang, F.; He, J. X.; Ye, X. Y.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Enhanced solar-to-heat efficiency of photothermal materials containing an additional light-reflection layer for solar-driven interfacial water evaporation. ACS Appl. Energy Mater. 2021, 4, 2932–2943.

    CAS  Google Scholar 

  117. Dong, W. C.; Wang, Y. C.; Zhang, Y. J.; Song, X. J.; Peng, H.; Jiang, H. Q. Bilayer rGO-based photothermal evaporator for efficient solar-driven water purification. Chem. —Eur. J. 2021, 27, 17428–17436.

    CAS  Google Scholar 

  118. Djellabi, R.; Noureen, L.; Dao, V. D.; Meroni, D.; Falletta, E.; Dionysiou, D. D.; Bianchi, C. L. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chem. Eng. J. 2022, 431, 134024.

    CAS  Google Scholar 

  119. Dao, V. D.; Vu, N. H.; Choi, H. S. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power Sources 2020, 448, 227388.

    CAS  Google Scholar 

  120. Cui, Y. Y.; Liu, J.; Li, Z. Q.; Ji, M. Y.; Zhao, M.; Shen, M. H.; Han, X.; Jia, T.; Li, C. L.; Wang, Y. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation. Adv. Funct. Mater. 2021, 31, 2106247.

    CAS  Google Scholar 

  121. Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.

    Google Scholar 

  122. Chiavazzo, E. Critical aspects to enable viable solar-driven evaporative technologies for water treatment. Nat. Commun. 2022, 13, 5813.

    CAS  Google Scholar 

  123. Chen, G. Y.; Sun, J. M.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y. J.; Gu, X. G.; Shuai, Z. G.; Tang, B. Z. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation. Adv. Mater. 2020, 32, 1908537.

    CAS  Google Scholar 

  124. Su, Y.; Chen, Z. X.; Tang, X. H.; Xu, H.; Zhang, Y. J.; Gu, C. Design of persistent and stable porous radical polymers by electronic isolation strategy. Angew. Chem., Int. Ed. 2021, 60, 24424–24429.

    CAS  Google Scholar 

  125. Wang, Z. X.; Han, M. C.; He, F.; Peng, S. Q.; Darling, S. B.; Li, Y. X. Versatile coating with multifunctional performance for solar steam generation. Nano Energy 2020, 74, 104886.

    CAS  Google Scholar 

  126. Chen, X.; Zhu, X. B.; He, S. M.; Hu, L. B.; Ren, Z. J. Advanced nanowood materials for the water-energy nexus. Adv. Mater. 2021, 33, 2001240.

    CAS  Google Scholar 

  127. Chen, L. Y.; Li, D. Z.; Wang, Y. X.; Duan, C. Y. Highly efficient solar steam generation of supported metal-organic framework membranes by a photoinduced electron transfer process. Nanoscale 2019, 11, 11121–11127.

    CAS  Google Scholar 

  128. Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2022, 34, 2107400.

    CAS  Google Scholar 

  129. Chen, G. G.; Li, T.; Chen, C. J.; Wang, C. W.; Liu, Y.; Kong, W. Q.; Liu, D. P.; Jiang, B.; He, S. M.; Kuang, Y. D. et al. A highly conductive cationic wood membrane. Adv. Funct. Mater. 2019, 29, 1902772.

    CAS  Google Scholar 

  130. Chen, F. J.; Gong, A. S.; Zhu, M. W.; Chen, G.; Lacey, S. D.; Jiang, F.; Li, Y. F.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G. et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 2017, 11, 4275–4282.

    CAS  Google Scholar 

  131. Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

    Google Scholar 

  132. Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

    CAS  Google Scholar 

  133. Hou, Y. Q.; Wang, Q. X.; Wang, S. L.; Wang, M.; Chen, X. M.; Hou, X. Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination. Chin. Chem. Lett. 2022, 33, 2155–2158.

    CAS  Google Scholar 

  134. Zhu, G. S.; Jing, G. X.; Xu, G. R.; Li, Q.; Huang, R. J.; Li, F.; Li, H. X.; Wang, D.; Chen, W. W.; Tang, B. Z. A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Res. 2022, 15, 6705–6712.

    CAS  Google Scholar 

  135. Song, C. Y.; Irshad, M. S.; Jin, Y.; Hu, J. H.; Liu, W. T. Arabic-dome-inspired hierarchical design for stable and high-efficiency solar-driven seawater desalination. Desalination 2022, 544, 116125.

    CAS  Google Scholar 

  136. Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

    CAS  Google Scholar 

  137. Xiao, Q. B.; Zhu, Y.; Xi, Y. L.; Kong, X. P.; Ye, X. M.; Zhang, Z. Y.; Qiu, C. P.; Xu, W. L.; Cheng, S.; Zhang, J. et al. Highly charged hydrogel with enhanced donnan exclusion toward ammonium for efficient solar-driven water remediation. Chem. Eng. J. 2022, 430, 133019.

    CAS  Google Scholar 

  138. Zhang, L. J.; Bai, B.; Hu, N.; Wang, H. L. Low-cost and facile fabrication of a candle soot/adsorbent cotton 3D-interfacial solar steam generation for effective water evaporation. Sol. Energy Mater. Sol. Cells 2021, 221, 110876.

    CAS  Google Scholar 

  139. Meng, T. T.; Jiang, B.; Li, Z. T.; Xu, X. T.; Li, D. G.; Henzie, J.; Nanjundan, A. K.; Yamauchi, Y.; Bando, Y. Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy 2021, 87, 106146.

    CAS  Google Scholar 

  140. Geng, Y.; Jiao, K.; Liu, X.; Ying, P. J.; Odunmbaku, O.; Zhang, Y. X.; Tan, S. C.; Li, L.; Zhang, W.; Li, M. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Res. 2022, 15, 3122–3142.

    CAS  Google Scholar 

  141. Zou, H. Q.; Meng, X. T.; Zhao, X.; Qiu, J. S. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 2022, 2207262.

    Google Scholar 

  142. Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

    CAS  Google Scholar 

  143. Guo, Y. H.; Zhao, X.; Zhao, F.; Jiao, Z. H.; Zhou, X. Y.; Yu, G. H. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 2020, 13, 2087–2095.

    CAS  Google Scholar 

  144. Yang, Q.; Sun, P. Z.; Fumagalli, L.; Stebunov, Y. V.; Haigh, S. J.; Zhou, Z. W.; Grigorieva, I. V.; Wang, F. C.; Geim, A. K. Capillary condensation under atomic-scale confinement. Nature 2020, 588, 250–253.

    CAS  Google Scholar 

  145. Roldughin, V. I.; Kharitonova, T. V. The mechanism of action and place of application of capillary forces. Colloid J. 2017, 79, 540–548.

    CAS  Google Scholar 

  146. Lockington, D. A.; Parlange, J. Y. A new equation for macroscopic description of capillary rise in porous media. J. Colloid Interface Sci. 2004, 278, 404–409.

    CAS  Google Scholar 

  147. Chaule, S.; Hwang, J.; Ha, S. J.; Kang, J. H.; Yoon, J. C.; Jang, J. H. Rational design of a high performance and robust solar evaporator via 3D-printing technology. Adv. Mater. 2021, 33, 2102649.

    CAS  Google Scholar 

  148. Bu, Y. M.; Zhou, Y. H.; Lei, W. W.; Ren, L. P.; Xiao, J. F.; Yang, H. J.; Xu, W. L.; Li, J. L. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation. J. Mater. Chem. A 2022, 10, 2856–2866.

    CAS  Google Scholar 

  149. Arunkumar, T.; Kabeel, A. E.; Raj, K.; Denkenberger, D.; Sathyamurthy, R.; Ragupathy, P.; Velraj, R. Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. J. Clean. Prod. 2018, 195, 1149–1161.

    Google Scholar 

  150. Alosaimi, F. K.; Tung, T. T.; Dao, V. D.; Huyen, N. K.; Nine, J.; Hassan, K.; Ma, J.; Losic, D. Graphene-based multifunctional surface and structure gradients engineered by atmospheric plasma. Appl. Mater. Today 2022, 27, 101486.

    Google Scholar 

  151. Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

    CAS  Google Scholar 

  152. Liang, Y. J.; Kim, S.; Kallem, P.; Choi, H. Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation. Chemosphere 2019, 221, 479–485.

    CAS  Google Scholar 

  153. Deroche, I.; Daou, T. J.; Picard, C.; Coasne, B. Reminiscent capillarity in subnanopores. Nat. Commun. 2019, 10, 4642.

    Google Scholar 

  154. Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

    Google Scholar 

  155. Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620–14628.

    CAS  Google Scholar 

  156. Chen, Q.; Zhao, J.; Cheng, H. H.; Qu, L. T. Progress in 3D-graphene assemblies preparation for solar-thermal steam generation and water treatment. Acta Phys. -Chim. Sin. 2022, 38, 2101020.

    Google Scholar 

  157. Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498.

    Google Scholar 

  158. Zhang, H. M.; Shen, X.; Kim, E.; Wang, M. Y.; Lee, J. H.; Chen, H. M.; Zhang, G. C.; Kim, J. K. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 2022, 32, 2111794.

    CAS  Google Scholar 

  159. Wang, Z. X.; Wu, X. C.; He, F.; Peng, S. Q.; Li, Y. X. Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 2021, 31, 2011114.

    CAS  Google Scholar 

  160. Chen, C. J.; Liu, H. Y.; Wang, H. T.; Zhao, Y. W.; Li, M. A scalable broadband plasmonic cuprous telluride nanowire-based hybrid photothermal membrane for efficient solar vapor generation. Nano Energy 2021, 84, 105868.

    CAS  Google Scholar 

  161. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

    CAS  Google Scholar 

  162. Zhou, H. Y.; Xue, C. R.; Chang, Q.; Yang, J. L.; Hu, S. L. Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chem. Eng. J. 2021, 421, 129822.

    CAS  Google Scholar 

  163. Liu, H. W.; Jin, R. Z.; Duan, S. C.; Ju, Y. J.; Wang, Z. Y.; Yang, K.; Wang, B. D.; Wang, B.; Yao, Y. G.; Chen, F. J. Anisotropic evaporator with a T-shape design for high-performance solar-driven zero-liquid discharge. Small 2021, 17, 2100969.

    CAS  Google Scholar 

  164. Li, N.; Qiao, L. F.; He, J. T.; Wang, S. X.; Yu, L. M.; Murto, P.; Li, X. Y.; Xu, X. F. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 2021, 31, 2008681.

    CAS  Google Scholar 

  165. Wang, L. F.; Shang, J.; Yang, G. L.; Ma, Y. X.; Kou, L. Z.; Liu, D.; Yin, H. Y.; Hegh, D.; Razal, J.; Lei, W. W. 2D higher-metal nitride nanosheets for solar steam generation. Small 2022, 18, 2201770.

    CAS  Google Scholar 

  166. Fang, Q. L.; Li, T. T.; Lin, H. B.; Jiang, R. R.; Liu, F. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl. Energy Mater. 2019, 2, 4354–4361.

    CAS  Google Scholar 

  167. Sheng, M. H.; Yang, Y. W.; Bin, X. Q.; Zhao, S. H.; Pan, C.; Nawaz, F.; Que, W. X. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468.

    CAS  Google Scholar 

  168. Zhao, H. Y.; Huang, J.; Zhou, J.; Chen, L. F.; Wang, C. M.; Bai, Y. X.; Zhou, J.; Deng, Y.; Dong, W. X.; Li, Y. S. et al. Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 2022, 16, 3554–3562.

    CAS  Google Scholar 

  169. Guo, Y. H.; Lu, H. Y.; Zhao, F.; Zhou, X. Y.; Shi, W.; Yu, G. H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

    CAS  Google Scholar 

  170. Su, J. W.; Chang, Q.; Xue, C. R.; Yang, J. L.; Hu, S. L. Electrochemical oxidation reconstructs graphene oxides on sponge for unprecedentedly high solar water evaporation. Carbon 2022, 194, 267–273.

    CAS  Google Scholar 

  171. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

    CAS  Google Scholar 

  172. Qiao, H. T.; Zhao, B. W.; Suo, X. D.; Xie, X. M.; Dang, L. F.; Yang, J.; Zhang, B. W. The biochar derived from carp for high-efficiency solar steam generation and water purification. Glob. Chall. 2022, 6, 2100083.

    Google Scholar 

  173. Xu, Y. L.; Lv, B. W.; Yang, Y.; Fan, X. F.; Yu, Y. L.; Song, C. W.; Liu, Y. M. Facile fabrication of low-cost starch-based biohydrogel evaporator for efficient solar steam generation. Desalination 2021, 517, 115260.

    CAS  Google Scholar 

  174. Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. X.; Li, J. L.; Zhu, S. N.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77.

    CAS  Google Scholar 

  175. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    CAS  Google Scholar 

  176. Qiao, L. F.; Li, N.; Luo, L.; He, J. T.; Lin, Y. X.; Li, J. J.; Yu, L. M.; Guo, C.; Murto, P.; Xu, X. F. Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J. Mater. Chem. A 2021, 9, 9692–9705.

    CAS  Google Scholar 

  177. Li, N.; Luo, L.; Guo, C.; He, J. T.; Wang, S. X.; Yu, L. M.; Wang, M.; Murto, P.; Xu, X. F. Shape-controlled fabrication of cost-effective, scalable and anti-biofouling hydrogel foams for solar-powered clean water production. Chem. Eng. J. 2022, 431, 134144.

    CAS  Google Scholar 

  178. Liu, X. H.; Liu, Z. C.; Devadutta Mishra, D.; Chen, Z. H.; Zhao, J.; Hu, C. Q. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow. Chem. Eng. J. 2022, 429, 132335.

    CAS  Google Scholar 

  179. Xu, Z. C.; Ran, X. Q.; Wang, D.; Zhong, M. F.; Zhang, Z. J. High efficient 3D solar interfacial evaporator: Achieved by the synergy of simple material and structure. Desalination 2022, 525, 115495.

    CAS  Google Scholar 

  180. Song, J. W.; Chen, C. J.; Yang, Z.; Kuang, Y. D.; Li, T.; Li, Y. J.; Huang, H.; Kierzewski, I.; Liu, B. Y.; He, S. M. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147.

    CAS  Google Scholar 

  181. Meng, S.; Zha, X. J.; Wu, C.; Zhao, X.; Yang, M. B.; Yang, W. Interfacial radiation-absorbing hydrogel film for efficient thermal utilization on solar evaporator surfaces. Nano Lett. 2021, 21, 10516–10524.

    CAS  Google Scholar 

  182. Liang, X. C.; Zhang, X. J.; Liu, Z. P.; Huang, Q. C.; Zhang, H.; Liu, C. K.; Liu, Y. Z. Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation. Sol. Energy 2020, 201, 581–588.

    CAS  Google Scholar 

  183. Saleque, A. M.; Ahmed, S.; Ivan, N. A. S.; Hossain, M. I.; Qarony, W.; Cheng, P. K.; Qiao, J. P.; Guo, Z. L.; Zeng, L. H.; Tsang, Y. H. High-temperature solar steam generation by MWCNT-HfTe2 van der Waals heterostructure for low-cost sterilization. Nano Energy 2022, 94, 106916.

    CAS  Google Scholar 

  184. Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

    CAS  Google Scholar 

  185. Li, Y. L.; Shi, X. L.; Sun, L. J.; Zhao, M. Y.; Jiang, T.; Jiang, W. C.; Deng, M. Y.; Yang, S. G.; Wang, Y. Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation. Desalination 2021, 515, 115192.

    CAS  Google Scholar 

  186. Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

    CAS  Google Scholar 

  187. Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

    CAS  Google Scholar 

  188. Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

    CAS  Google Scholar 

  189. Qiao, L. F.; Li, S.; Li, N.; Wang, S. X.; Wang, C. F.; Meng, X. C.; Murto, P.; Xu, X. F. Fabrication of monopile polymer foams via rotating gas foaming: Hybrid applications in solar-powered interfacial evaporation and water remediation. Sol. RRL 2022, 6, 2200241.

    CAS  Google Scholar 

  190. Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

    CAS  Google Scholar 

  191. Yu, F.; Wang, J. X.; Yan, L.; Guo, Z. Z.; Chen, Z. H.; Irshad, M. S.; Qian, J. W.; Mei, T.; Wang, X. B. Bio-inspired molybdenum carbide/carbon-based aerogel with advanced thermal management as a solar evaporator. Sol. Energy Mater. Sol. Cells 2022, 243, 111738.

    CAS  Google Scholar 

  192. Sun, X. S.; Jia, X. H.; Yang, J.; Wang, S. Z.; Li, Y.; Shao, D.; Song, H. J. Bamboo fiber-reinforced chitosan sponge as a robust photothermal evaporator for efficient solar vapor generation. J. Mater. Chem. A 2021, 9, 23891–23901.

    CAS  Google Scholar 

  193. Guo, Y. H.; de Vasconcelos, L. S.; Manohar, N.; Geng, J. F.; Johnston, K. P.; Yu, G. H. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem., Int. Ed. 2022, 61, e202114074.

    CAS  Google Scholar 

  194. Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A bioinspired elastic hydrogel for solar-driven water purification. Adv. Mater. 2021, 33, 2007833.

    CAS  Google Scholar 

  195. Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    CAS  Google Scholar 

  196. Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253.

    CAS  Google Scholar 

  197. Zhang, R.; Xiang, B.; Wang, Y. T.; Tang, S. C.; Meng, X. K. A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Mater. Horiz. 2022, 9, 1232–1242.

    CAS  Google Scholar 

  198. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

    CAS  Google Scholar 

  199. Zhu, F. B.; Wang, L. Q.; Demir, B.; An, M.; Wu, Z. L.; Yin, J.; Xiao, R.; Zheng, Q.; Qian, J. Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 2020, 7, 3187–3195.

    CAS  Google Scholar 

  200. Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041–19046.

    CAS  Google Scholar 

  201. Yu, Z.; Gu, R. N.; Tian, Y.; Xie, P. F.; Jin, B. C.; Cheng, S. A. Enhanced interfacial solar evaporation through formation of micromeniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 2022, 32, 2108586.

    CAS  Google Scholar 

  202. Ma, C.; Liu, Q. L.; Peng, Q. Q.; Yang, G. H.; Jiang, M.; Zong, L.; Zhang, J. M. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices. ACS Nano 2021, 15, 19877–19887.

    CAS  Google Scholar 

  203. Fang, Z. X.; Lin, Y. H.; Zheng, J. J.; Yan, J. F.; Wang, W. W.; Zheng, W. G.; Pang, G. S. Highly efficient solar distiller integrated with photothermal membrane, superhydrophilic glass, and superhydrophobic heat sink. Sustain. Energy Technol. Assess. 2022, 53, 102517.

    Google Scholar 

  204. Srivastava, P. K.; Agrawal, S. K. Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers. Desalination 2013, 311, 198–205.

    CAS  Google Scholar 

  205. Zhang, B. P.; Gu, Q. F.; Wang, C.; Gao, Q. L.; Guo, J. X.; Wong, P. W.; Liu, C. T.; An, A. K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770.

    CAS  Google Scholar 

  206. Ouyang, X.; Wu, P.; Deng, J. S.; Ma, Q. L.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Wang, J. X.; Liu, L. Flexible solar absorber using hydrophile/hydrophobe amphipathic Janus nanofiber as building unit for efficient vapor generation. Sep. Purif. Technol. 2022, 297, 121526.

    CAS  Google Scholar 

  207. Zhang, S. Q.; Wei, H.; Zhang, Z. J.; Zhang, J. Z.; Bao, H.; Zhang, W. A bioinspired solar evaporator with a horizontal channel-like framework for efficient and stable high-salinity brine desalination. Nanoscale 2022, 14, 6066–6074.

    CAS  Google Scholar 

  208. Lu, Y.; Wang, X.; Fan, D. Q.; Yang, H.; Xu, H. L.; Min, H. H.; Yang, X. F. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain. Mater. Technol. 2020, 25, e00180.

    CAS  Google Scholar 

  209. Zhang, Q.; Yi, G.; Fu, Z.; Yu, H. T.; Chen, S.; Quan, X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207.

    CAS  Google Scholar 

  210. He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

    CAS  Google Scholar 

  211. Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

    Google Scholar 

  212. Hu, C. Z.; Liu, Z. T.; Lu, X. L.; Sun, J. Q.; Liu, H. J.; Qu, J. H. Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane. J. Mater. Chem. A 2018, 6, 4737–4745.

    CAS  Google Scholar 

  213. Xiao, C. H.; Liang, W. D.; Chen, L. H.; He, J. X.; Liu, F.; Sun, H. X.; Zhu, Z. Q.; Li, A. Janus poly(ionic liquid) monolithic photothermal materials with superior salt-rejection for efficient solar steam generation. ACS Appl. Energy Mater. 2019, 2, 8862–8870.

    CAS  Google Scholar 

  214. Wang, F.; Su, Y. N.; Li, Y. Z.; Wei, D. Y.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 2020, 3, 8746–8754.

    CAS  Google Scholar 

  215. Liu, C. K.; Cai, C. J.; Ma, F. Q.; Zhao, X. Z.; Ahmad, H. Accelerated solar steam generation for efficient ions removal. J. Colloid Interface Sci. 2020, 560, 103–110.

    CAS  Google Scholar 

  216. Zeng, J.; Wang, Q. Y.; Shi, Y.; Liu, P.; Chen, R. K. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 2019, 9, 1900552.

    CAS  Google Scholar 

  217. Zhao, W.; Gong, H.; Song, Y.; Li, B.; Xu, N.; Min, X. Z.; Liu, G. L.; Zhu, B.; Zhou, L.; Zhang, X. X. et al. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 2021, 31, 2100025.

    CAS  Google Scholar 

  218. Wu, L.; Dong, Z. C.; Cai, Z. R.; Ganapathy, T.; Fang, N. X.; Li, C. X.; Yu, C. L.; Zhang, Y.; Song, Y. L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 2020, 11, 521.

    Google Scholar 

  219. Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

    CAS  Google Scholar 

  220. Li, J. J.; Li, N.; Wu, X. C.; Wang, S. X.; Li, S.; Guo, C.; Yu, L. M.; Wang, Z. H.; Murto, P.; Xu, X. F. Photothermal aerogel beads based on polysaccharides: Controlled fabrication and hybrid applications in solar-powered interfacial evaporation, water remediation, and soil enrichment. ACS Appl. Mater. Interfaces 2022, 14, 50266–50279.

    CAS  Google Scholar 

  221. Meng, F. L.; Gao, M. M.; Ding, T. P.; Yilmaz, G.; Ong, W. L.; Ho, G. W. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv. Funct. Mater. 2020, 30, 2002867.

    CAS  Google Scholar 

  222. Liu, H.; Ye, H. G.; Gao, M. M.; Li, Q.; Liu, Z. W.; Xie, A. Q.; Zhu, L. L.; Ho, G. W.; Chen, S. Conformal microfluidic-blow-spun 3D photothermal catalytic spherical evaporator for omnidirectional enhanced solar steam generation and CO2 reduction. Adv. Sci. 2021, 8, 2101232.

    CAS  Google Scholar 

  223. Qi, D. P.; Liu, Y.; Liu, Y. B.; Liu, Z. Y.; Luo, Y. F.; Xu, H. B.; Zhou, X.; Zhang, J. J.; Yang, H.; Wang, W. et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 2020, 32, 2004401.

    CAS  Google Scholar 

  224. Zhang, P. P.; Zhao, F.; Shi, W.; Lu, H. Y.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv. Mater. 2022, 34, 2110548.

    CAS  Google Scholar 

  225. Peng, Y. B.; Wei, X.; Wang, Y. J.; Li, W. W.; Zhang, S. X.; Jin, J. Metal-organic framework composite photothermal membrane for removal of high-concentration volatile organic compounds from water via molecular sieving. ACS Nano 2022, 16, 8329–8337.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China (Nos. buctrc201929 and buctrc202029), the National Natural Science Foundation of China (Nos. 52002014 and U2003216), the Natural Science Foundation of Guangxi Province (No. 2021GXNSFAA220018), and the State Key Laboratory of Fine Chemicals (No. KF2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangtong Meng or Jieshan Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Meng, X., Zou, H. et al. Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities. Nano Res. 16, 6015–6038 (2023). https://doi.org/10.1007/s12274-023-5488-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5488-2

Keywords

Navigation