Skip to main content
Log in

A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li+ migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    CAS  Google Scholar 

  2. Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2019, 5, 105–126.

    Google Scholar 

  3. Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270.

    CAS  Google Scholar 

  4. Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

    CAS  Google Scholar 

  5. Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

    CAS  Google Scholar 

  6. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    CAS  Google Scholar 

  7. Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

    Google Scholar 

  8. Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.

    CAS  Google Scholar 

  9. Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

    CAS  Google Scholar 

  10. Zhu, L.; Wang, Y. W.; Wu, Y. M.; Feng, W. L.; Liu, Z. L.; Tang, W. P.; Wang, X. W.; Xia, Y. Y. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability. Adv. Funct. Mater. 2022, 32, 2201136.

    CAS  Google Scholar 

  11. Ding, P. P.; Lin, Z. Y.; Guo, X. W.; Wu, L. Q.; Wang, Y. T.; Guo, H. X.; Li, L. L.; Yu, H. J. Polymer electrolytes and interfaces in solidstate lithium metal batteries. Mater. Today 2021, 51, 449–474.

    CAS  Google Scholar 

  12. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

    CAS  Google Scholar 

  13. Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches, and applications. Ionics 2016, 22, 1259–1279.

    CAS  Google Scholar 

  14. Zhu, M.; Li, L. L.; Zhang, Y. J.; Wu, K.; Yu, F. F.; Huang, Z. Y.; Wang, G. Y.; Li, J. Y.; Wen, L. Y.; Liu, H. K. et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153.

    Google Scholar 

  15. Li, Z.; Zhou, X. Y.; Guo, X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Mater. 2020, 29, 149–155.

    CAS  Google Scholar 

  16. Jin, Y. M.; Zong, X.; Zhang, X. B.; Jia, Z. G.; Xie, H. J.; Xiong, Y. P. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 2022, 49, 433–444.

    Google Scholar 

  17. Wen, S. J.; Luo, C.; Wang, Q. R.; Wei, Z. Y.; Zeng, Y. X.; Jiang, Y. D.; Zhang, G. Z.; Xu, H. L.; Wang, J.; Wang, C. Y. et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 2022, 47, 453–461.

    Google Scholar 

  18. Zhao, Y. B.; Bai, Y.; Li, W. D.; Liu, A. M.; An, M. Z.; Bai, Y. P.; Chen, G. R. Semi closed coordination structure polymer electrolyte combined in situ interface engineering for lithium batteries. Chem. Eng. J. 2020, 394, 124847.

    CAS  Google Scholar 

  19. Morioka, T.; Ota, K.; Tominaga, Y. Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer 2016, 84, 21–26.

    CAS  Google Scholar 

  20. Mackanic, D. G.; Michaels, W.; Lee, M.; Feng, D. W.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 2018, 8, 1800703.

    Google Scholar 

  21. Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C. M.; O’Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 2018, 264, 367–375.

    CAS  Google Scholar 

  22. Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

    CAS  Google Scholar 

  23. Wen, K. H.; Xin, C. Z.; Guan, S. D.; Wu, X. B.; He, S.; Xue, C. J.; Liu, S. J.; Shen, Y.; Li, L. L.; Nan, C. W. Ion-dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv. Mater. 2022, 34, 2202143.

    CAS  Google Scholar 

  24. Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

    CAS  Google Scholar 

  25. Shen, L.; Wu, H. B.; Liu, F.; Brosmer, J. L.; Shen, G. R.; Wang, X. F.; Zink, J. I.; Xiao, Q. F.; Cai, M.; Wang, G. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 2018, 30, 1707476.

    Google Scholar 

  26. Du, L. L.; Zhang, B.; Deng, W.; Cheng, Y.; Xu, L.; Mai, L. Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 2022, 12, 2200501.

    CAS  Google Scholar 

  27. Cabañero Martínez, M. A.; Boaretto, N.; Naylor, A. J.; Alcaide, F.; Salian, G. D.; Palombarini, F.; Ayerbe, E.; Borras, M.; Casas-Cabanas, M. Are polymer-based electrolytes ready for high-voltage lithium battery applications. An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 2022, 12, 2201264.

    Google Scholar 

  28. Wang, Z. X.; Huang, B. Y.; Xue, R. J.; Huang, X. J.; Chen, L. Q. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ion. 1999, 121, 141–156.

    CAS  Google Scholar 

  29. Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

    CAS  Google Scholar 

  30. Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

    CAS  Google Scholar 

  31. Zhong, R. Q.; Wu, Y. X.; Liang, Z. B.; Guo, W. H.; Zhi, C. X.; Qu, C.; Gao, S.; Zhu, B. J.; Zhang, H.; Zou, R. Q. Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon 2019, 142, 115–122.

    CAS  Google Scholar 

  32. Serre, C.; Mellot-Draznieks, C., Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2017, 315, 1828–1831.

    Google Scholar 

  33. Ma, M. Y.; Bétard, A.; Weber, I.; Al-Hokbany, N. S.; Fischer, R. A.; Metzler-Nolte, N. Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice “breathing”. Cryst. Growth Des. 2013, 13, 2286–2291.

    CAS  Google Scholar 

  34. Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

    CAS  Google Scholar 

  35. Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

    CAS  Google Scholar 

  36. Tanthana, J.; Chuang, S. S. C. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 2010, 3, 957–964.

    CAS  Google Scholar 

  37. Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

    Google Scholar 

  38. Zhu, F. L.; Bao, H. F.; Wu, X. S.; Tao, Y. L.; Qin, C.; Su, Z. M.; Kang, Z. H. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 43206–43213.

    CAS  Google Scholar 

  39. Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919–2926.

    CAS  Google Scholar 

  40. Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

    CAS  Google Scholar 

  41. Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

    CAS  Google Scholar 

  42. Park, K.; Goodenough, J. B. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 2017, 7, 1700732.

    Google Scholar 

  43. Xu, H. H.; Li, Y. T.; Zhou, A. J.; Wu, N.; Xin, S.; Li, Z. Y.; Goodenough, J. B. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40°C. Nano Lett. 2018, 18, 7414–7418.

    CAS  Google Scholar 

  44. Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Stabilizing polymer-lithium interface in a rechargeable solid battery. Adv. Funct. Mater. 2020, 30, 1908047.

    CAS  Google Scholar 

  45. Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

    CAS  Google Scholar 

  46. Li, X.; Liu, J. D.; He, J.; Wang, H. P.; Qi, S. H.; Wu, D. X.; Huang, J. D.; Li, F.; Hu, W.; Ma, J. M. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li. ∣ NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 2021, 31, 2104395.

    CAS  Google Scholar 

  47. Wang, Y.; Liu, J. H.; Chen, T. W.; Lin, W. C.; Zheng, J. X. Factors that affect volume change during electrochemical cycling in cathode materials for lithium ion batteries. Phys. Chem. Chem. Phys. 2022, 24, 2167–2175.

    CAS  Google Scholar 

  48. Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Shenzhen Science and Technology Program (No. RCBS20210609103647030), National Natural Science Foundation of China (Nos. 22005134, 12275119, and 52227802), Guangdong Grant (No. 2021ZT09C064), Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by the Municipal Development and Reform Commission of Shenzhen, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices (No. 2019B121205001), the Open Research Fund of Songshan Lake Materials Laboratory (No. 2022SLABFK04), and Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, R., Gao, L. et al. A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries. Nano Res. 16, 9259–9266 (2023). https://doi.org/10.1007/s12274-023-5480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5480-x

Keywords

Navigation