Skip to main content
Log in

N2 photofixation promoted by in situ photoinduced dynamic iodine vacancies at step edge in Bi5O7I nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous photosynthesis is a promising route for sustainable ammonia production, which can utilize renewable energy and water as the hydrogen source under ambient condition. In this study, a series of Bi5O7I (BOI) nanosheets and nanotubes are synthesized, and the surface tensile strain is formed by curling the nanosheets into nanotubes to tune the concentration and location of dynamic vacancies. Scanning transmission electron microscopy (STEM) with spherical aberration correction confirms the presence of intrinsic areal defects on the surface of the BOI nanotube resulted from surface tensile strain. The presence of areal defects lowers the formation energy of I vacancies (IV) at step edge site, thus the IV with higher concentration would be favorably generated under visible light. Rapid scan in situ Fourier transform infrared (FT-IR) analysis in the aqueous media reveals that the IV promotes photocatalytic N2 activation and reduction, and proceeds through an associative alternating mechanism. Specially, after turning off the light, the surface vacancy sites can be reoccupied by I ions, which enables the protection and regeneration of photocatalyst surface in an aerobic and dark environment. This work provides an innovative strategy to tune concentration and location of dynamic surface vacancies on photocatalysts by building surface tensile strain for advancing sustainable ammonia production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.; Rees, D. C. Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science 2014, 345, 1620–1623.

    CAS  Google Scholar 

  2. Lan, R.; Irvine, J. T. S.; Tao, S. W. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482–1494.

    CAS  Google Scholar 

  3. Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

    CAS  Google Scholar 

  4. Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062.

    CAS  Google Scholar 

  5. Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    CAS  Google Scholar 

  6. Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

    CAS  Google Scholar 

  7. Kuriyama, S.; Arashiba, K.; Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat. Commun. 2016, 7, 12181.

    CAS  Google Scholar 

  8. Ali, M.; Zhou, F. L.; Chen, K.; Kotzur, C.; Xiao, C. L.; Bourgeois, L.; Zhang, X. Y.; MacFarlane, D. R. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 2016, 7, 11335.

    CAS  Google Scholar 

  9. Lu, Y. H.; Yang, Y.; Zhang, T. F.; Ge, Z.; Chang, H. C.; Xiao, P. S.; Xie, Y. Y.; Hua, L.; Li, Q. Y.; Li, H. Y. et al. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 2016, 10, 10507–10515.

    CAS  Google Scholar 

  10. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    CAS  Google Scholar 

  11. Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

    CAS  Google Scholar 

  12. Nishibayashi, Y. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg. Chem. 2015, 54, 9234–9247.

    CAS  Google Scholar 

  13. Lai, F. L.; Feng, J. R.; Ye, X. B.; Zong, W.; He, G. J.; Yang, C.; Wang, W.; Miao, Y. E.; Pan, B. C.; Yan, W. S. et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652–1659.

    CAS  Google Scholar 

  14. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Google Scholar 

  15. Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

    CAS  Google Scholar 

  16. Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov, J. K. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 2001, 123, 8404–8405.

    CAS  Google Scholar 

  17. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev 2018, 118, 6337–6408.

    CAS  Google Scholar 

  18. Xiong, L. J.; Hu, Y. J.; Yang, Y.; Deng, Q. H.; Tang, Z.; Li, P. J.; Shen, J. Y.; Zhang, X. Y.; Wang, T. Y.; Xu, X. Y. et al. Electron pump strengthened facet engineering: Organic half-metallic C(CN)3 enclosed (100) facet exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Appl. Catal. B: Environ. 2022, 317, 121660.

    CAS  Google Scholar 

  19. Tang, Z.; Xiong, L. J.; Zhang, X. Y.; Shen, J. Y.; Sun, A. W.; Lin, X. Y.; Yang, Y. Biomass-induced diphasic carbon decoration for carbon nitride: Band and electronic engineering targeting efficient N2 photofixation. Small 2022, 18, 2105217.

    CAS  Google Scholar 

  20. Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

    CAS  Google Scholar 

  21. Wang, L.; Zhao, X.; Lv, D. D.; Liu, C. W.; Lai, W. H.; Sun, C. Y.; Su, Z. M.; Xu, X.; Hao, W. C.; Dou, S. X. et al. Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv. Mater. 2020, 32, 2004311.

    CAS  Google Scholar 

  22. Qiu, P. Y.; Wang, J. W.; Liang, Z. Q.; Xue, Y. J.; Zhou, Y. L.; Zhang, X. L.; Cui, H. Z.; Cheng, G. Q.; Tian, J. The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets. Chin. Chem. Lett. 2021, 32, 3501–3504.

    CAS  Google Scholar 

  23. Wu, X. L.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J. Mater. Chem. A 2017, 5, 8117–8124.

    CAS  Google Scholar 

  24. Dong, X. A.; Cui, Z. H.; Shi, X.; Yan, P.; Wang, Z. M.; Co, A. C.; Dong, F. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew. Chem., Int. Ed. 2022, 61, e202200937.

    CAS  Google Scholar 

  25. Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Zhang, S. H.; Dong, F. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction. ACS Catal. 2022, 12, 3965–3973.

    Google Scholar 

  26. Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Dong, F. Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 2022, 67, 1137–1144.

    CAS  Google Scholar 

  27. Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.

    CAS  Google Scholar 

  28. Pacchioni, G. Oxygen vacancy: The invisible agent on oxide surfaces. ChemPhysChem 2003, 4, 1041–1047.

    CAS  Google Scholar 

  29. Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270.

    CAS  Google Scholar 

  30. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    CAS  Google Scholar 

  31. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    CAS  Google Scholar 

  32. Di, J.; Song, P.; Zhu, C.; Chen, C.; Xiong, J.; Duan, M. L.; Long, R.; Zhou, W. Q.; Xu, M. Z.; Kang, L. X. et al. Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction. ACS Mater. Lett. 2020, 2, 1025–1032.

    CAS  Google Scholar 

  33. Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, 1707301.

    Google Scholar 

  34. Qin, H. S.; Sorkin, V.; Pei, Q. X.; Liu, Y. L.; Zhang, Y. W. Failure in two-dimensional materials: Defect sensitivity and failure criteria. J. Appl. Mech. 2020, 87, 030802.

    CAS  Google Scholar 

  35. Huang, H. W.; Liu, K.; Chen, K.; Zhang, Y. L.; Zhang, Y. H.; Wang, S. C. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 2014, 118, 14379–14387.

    CAS  Google Scholar 

  36. Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.

    Google Scholar 

  37. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    CAS  Google Scholar 

  38. Sheng, H.; Zhang, H. N.; Song, W. J.; Ji, H. W.; Ma, W. H.; Chen, C. C.; Zhao, J. C. Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: An in situ IR spectroscopy study. Angew. Chem., Int. Ed. 2015, 54, 5905–5909.

    CAS  Google Scholar 

  39. Tsai, M. C.; Ship, U.; Bassignana, I. C.; Küppers, J.; Ertl, G. A vibrational spectroscopy study on the interaction of N2 with clean and K-promoted Fe (111) surfaces: π-bonded dinitrogen as precursor for dissociation. Surf. Sci. 1985, 155, 387–399.

    CAS  Google Scholar 

  40. Ding, K. Y.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. Cobalt-dinitrogen complexes with weakened N–N bonds. J. Am. Chem. Soc. 2009, 131, 9471–9472.

    CAS  Google Scholar 

  41. Edwards, J. G.; Davies, J. A.; Boucher, D. L.; Mennad, A. An opinion on the heterogeneous photoreactions of N2 with H2O. Angew. Chem., Int. Ed. 1992, 31, 480–482.

    Google Scholar 

  42. Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

    CAS  Google Scholar 

  43. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National key Research and Development project of China (No. 2020YFA0710000), the National Natural Science Foundation of China (Nos. 22225606, 22176029, and 21822601), the Sichuan Natural Science Foundation for Distinguished Scholars (No. 2021JDJQ0006), and the Fundamental Research Funds for the Central Universities (No. ZYGX2019Z021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wang, K., Cui, Z. et al. N2 photofixation promoted by in situ photoinduced dynamic iodine vacancies at step edge in Bi5O7I nanotubes. Nano Res. 16, 6679–6686 (2023). https://doi.org/10.1007/s12274-023-5462-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5462-z

Keywords

Navigation