Skip to main content
Log in

Entrapment of Bi2O3 nanoparticles in TiO2 nanotubes for visible light-driven photocatalysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, we prepared nanoparticles of the visible light-responsive photocatalyst, Bi2O3 entrapped in anatase TiO2 nanotubes (Bi2O3-in-TNTs) via a vacuum-assisted precursor-filling process followed by annealing. Owing to the unique tubular electronic structure of TiO2 nanotubes, the interior of the nanotube is in an electron-deficient state, which was confirmed by XPS spectra and H2-TPR. Electrochemical impedance studies showed that the Bi2O3-in-TNTs demonstrated a more efficient separation of photogenerated carriers than when Bi2O3 nanoparticles were deposited on the outer wall of TiO2 nanotubes (Bi2O3-out-TNTs). Due to the confinement effect of TiO2 nanotubes, which inhibits photogenerated carriers’ recombination, the Bi2O3-in-TNTs exhibited a better photocatalytic performance for the photo-degradation of methyl orange under visible light compared to Bi2O3-out-TNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. S. Kumar, A. Kumar, A. Bahuguna, V. Sharma, V. Krishnan, Beilstein. J. Nanotechnol. 8, 1571 (2017)

    CAS  Google Scholar 

  2. P. Verma, S.K. Samanta, Res. Chem. Intermed. 43, 11 (2017)

    Article  Google Scholar 

  3. L.P. Wu, M.Y. Zhang, J. Li, C.Q. Cen, X.J. Li, Res. Chem. Intermed. 42, 5 (2015)

    Google Scholar 

  4. H. Yu, J. Wang, S. Zhang, X.J. Li, H.J. Zhao, Chin. Sci. Bull. 56, 23 (2011)

    Google Scholar 

  5. G.M. Peng, R. Du, Q.M. Peng, S.Q. Wu, C.L. Yu, Mater. Chem. Phys. 214, 34 (2018)

    Article  CAS  Google Scholar 

  6. L. Ren, Y.Z. Li, J.T. Hou, J.L. Bai, M.Y. Mao, M. Zeng, X.J. Zhao, N. Li, Appl. Catal. B Environ. 181, 625 (2016)

    Article  CAS  Google Scholar 

  7. H.Q. Sun, R. Ullah, S. Chong, H.M. Ang, M.O. Tade, S.B. Wang, Appl. Catal. B Environ. 108, 1 (2011)

    Google Scholar 

  8. N.C. Greenham, X.G. Peng, A.P. Alivisatos, Phys. Rev. B 54, 24 (1996)

    Article  Google Scholar 

  9. L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6, 1 (2014)

    Article  CAS  Google Scholar 

  10. Y. Cheng, F. Gao, L. An, J. Lan, X.M. Li, G.H. Wang, Res. Chem. Intermed. 41, 3 (2015)

    Article  Google Scholar 

  11. G. Peng, J. Wu, S. Wu, X. Xu, J.E. Ellis, G. Xu, A. Star, D. Gao, J. Mater. Chem. A 4, 1520 (2016)

    Article  CAS  Google Scholar 

  12. M.L. Chang, H. Hu, Y. Zhang, D. Chen, L.P. Wu, X.J. Li, Nanomater (Basel) 7, 5 (2017)

    Google Scholar 

  13. D.F. Xu, Y. Hai, X.C. Zhang, S.Y. Zhang, R.G. He, Appl. Surf. Sci. 400, 530 (2017)

    Article  CAS  Google Scholar 

  14. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D. Pathinettam Padiyan, J. Nanoparticle Res. 19, 4 (2017)

    Article  Google Scholar 

  15. J.S. Chen, S.Y. Qin, Y.D. Liu, F. Xin, X.H. Yin, Res. Chem. Intermed. 40, 2 (2014)

    Google Scholar 

  16. L. An, G.H. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Tian, Res. Chem. Intermed. 41, 10 (2015)

    Google Scholar 

  17. W. Chen, X. Pan, M.G. Willinger, D.S. Su, X.H. Bao, J. Am. Chem. Soc. 128, 10 (2006)

    Article  Google Scholar 

  18. W. Chen, X. Pan, X.H. Bao, J. Am. Chem. Soc. 129, 23 (2007)

    Google Scholar 

  19. X. Pan, X.H. Bao, Acc. Chem. Res. 44, 8 (2011)

    Article  Google Scholar 

  20. X. Yang, L.P. Wu, L.L. Ma, X.J. Li, T.J. Wang, S.J. Liao, Catal. Commun. 59, 184 (2015)

    Article  CAS  Google Scholar 

  21. X. Yang, X. Yu, L.Z. Long, T.J. Wang, L.L. Ma, L.P. Wu, Y. Bai, X.J. Li, S.J. Liao, Chem. Commun. 50, 21 (2014)

    Google Scholar 

  22. W.B. Wang, M.Y. Ding, L.L. Ma, X. Yang, J. Li, N. Tsubaki, G.H. Yang, T.J. Wang, X.J. Li, Fuel 164, 347 (2016)

    Article  CAS  Google Scholar 

  23. X. Yang, X.Y. Lu, L.P. Wu, J.F. Zhang, Y.Q. Huang, X.J. Li, Environ. Chem. Lett. 15, 3 (2017)

    Article  Google Scholar 

  24. S. Zhang, W.M. Luo, X. Yang, T. Lv, Y.Q. Huang, K.J. Dong, X.J. Li, Chem. Select. 2, 16 (2017)

    Google Scholar 

  25. L.Z. Long, X. Yu, L.P. Wu, J. Li, X.J. Li, Nanotechnology 25, 3 (2014)

    Article  Google Scholar 

  26. L.P. Wu, Y. Qiu, M. Xi, X.J. Li, C. Chen, New J. Chem. 39, 6 (2015)

    CAS  Google Scholar 

  27. W.Y. Gou, P. Wu, D.M. Jiang, X.M. Ma, J. Alloy. Compd. 646, 437 (2015)

    Article  CAS  Google Scholar 

  28. H. Yu, X.J. Li, S.J. Zheng, W. Xu, Mater. Chem. Phys. 97, 1 (2006)

    Article  Google Scholar 

  29. E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Appl. Catal. B Environ. 178, 45 (2015)

    Article  Google Scholar 

  30. R.C. Haddon, Science 261, 5128 (1993)

    Article  Google Scholar 

  31. P.W. Leu, B. Shan, K. Cho, Phys. Rev. B 73, 19 (2006)

    Article  Google Scholar 

  32. D. Ugarte, A. Chatelain, W.A.D. Heer, Science 274, 5294 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Science and Technology Program of Guangzhou, China (No. 201803030019) and the Natural Science Foundation of Guangdong Province (No. 2015A030313715). G.P. thanks the partial support of Natural Science Foundation of Jiangxi Province (20171BAB213010). The authors thanks for the support from the Analytical & Testing Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China. The authors declare that there is no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Peng, G., Wu, L. et al. Entrapment of Bi2O3 nanoparticles in TiO2 nanotubes for visible light-driven photocatalysis. Res Chem Intermed 44, 6753–6763 (2018). https://doi.org/10.1007/s11164-018-3520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3520-z

Keywords

Navigation