Skip to main content
Log in

Emerging monoelemental 2D materials (Xenes) for biosensor applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Currently, numerous monoelemental two-dimensional (2D) materials, called Xenes, have been discovered, including graphyne (GD), silicene, germanene, arsenene, and borophene. Their structures, fabrication methods, as well as properties have been extensively explored. Based on their single-element composition, high optical response capability, excellent electrical-optical properties, large specific surface area (SSA) and easy modification, Xenes have been widely used in photoelectric applications (detection, modulation, light processing) and biomedicine (biological sensing, drug loading, bioimaging, etc.). Especially in the field of biomedicine, Xenes are expected to induce a great breakthrough. In this review, we introduce the structural characteristics, synthesis and modification methods of several common Xenes respectively. The general properties including optical, electronic, physical and chemical properties of Xenes are summarized. Their diverse utilization as biosensors for nucleic acid sequencing, bioactive detection, and cancer diagnosis, etc. are also explicitly explored. Finally, the challenges and future perspectives of Xenes in biosensor are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

    CAS  Google Scholar 

  2. Sabaeian, M.; Hajati, Y. Design of high performance and low resistive loss graphene solar cells. J. Eur. Opt. Soc. -Rapid Publ. 2020, 16, 14.

    Google Scholar 

  3. Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    CAS  Google Scholar 

  4. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    CAS  Google Scholar 

  5. Ahmad, K.; Ahmad, M. A.; Raza, R.; Khan, M. A.; Abbas, G. Synthesis and Electrical Characterizations of Graphene Oxide Incorporated Nanocomposite Cathode Materials for Low Temperature SOFCs [Online]. https://doi.org/10.2139/ssrn. 3973921. or https://ssrn.com/abstract=3973921 (accessed Nov. 29, 2021)

  6. Ahmad, W.; Gong, Y. N.; Abbas, G.; Khan, K.; Khan, M.; Ali, G.; Shuja, A.; Tareen, K.; Khan, Q.; Li, D. L. Evolution of low-dimensional material-based field-effect transistors. Nanoscale 2021, 13, 5162–5186.

    CAS  Google Scholar 

  7. Cao, F. C.; Zhang, Y.; Wang, H. Q.; Khan, K.; Tareen, A. K.; Qian, W. J.; Zhang, H.; Ågren, H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554.

    CAS  Google Scholar 

  8. Chen, H. L.; Gao, L. F.; Qin, Z. P.; Ge, Y. Q.; Khan, K.; Song, Y. F.; Xie, G. Q.; Xu, S. X.; Zhang, H. Recent advances of low-dimensional materials in Mid-and Far-infrared photonics. Appl. Mater. Today 2020, 21, 100800.

    Google Scholar 

  9. Dadashi Firouzjaei, M.; Karimiziarani, M.; Moradkhani, H.; Elliott, M.; Anasori, B. MXenes: The two-dimensional influencers. Mater. Today Adv. 2022, 13, 100202.

    CAS  Google Scholar 

  10. Hu, H. G.; Shi, Z.; Khan, K.; Cao, R.; Liang, W. Y.; Tareen, A. K.; Zhang, Y.; Huang, W. C.; Guo, Z. N.; Luo, X. L. et al. Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 2020, 8, 5421–5441.

    CAS  Google Scholar 

  11. Kang, J. L.; Zheng, C. Y.; Khan, K.; Tareen, A. K.; Aslam, M.; Wang, B. Two dimensional nanomaterials-enabled smart light regulation technologies: Recent advances and developments. Optik 2020, 220, 165191.

    CAS  Google Scholar 

  12. Khan, K.; Tareen, A. K.; Aslam, M.; Ali Khan, S.; Khan, Q.; Khan, Q. U.; Saeed, M.; Siddique Saleemi, A.; Kiani, M.; Ouyang, Z. B. et al. Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction. Sci. Rep. 2019, 9, 19809.

    CAS  Google Scholar 

  13. Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

    CAS  Google Scholar 

  14. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Advm. Mater. 2015, 27, 6575–6581.

    CAS  Google Scholar 

  15. Khan, K.; Tareen, A. K.; Aslam, M.; Mahmood, A.; Khan, Q.; Zhang, Y. P.; Ouyang, Z. B.; Guo, Z. Y.; Zhang, H. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254.

    CAS  Google Scholar 

  16. Khan, K.; Tareen, A. K.; Aslam, M.; Sagar, R. U. R.; Zhang, B.; Huang, W. C.; Mahmood, A.; Mahmood, N.; Khan, K.; Zhang, H. et al. Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 2020, 12, 167.

    CAS  Google Scholar 

  17. Ren, H. Z.; Zhang, S. P.; Huang, Y. T.; Cheng, Y. J.; Lv, L.; Dai, H. Dual-readout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets. Chem. Commun. 2020, 56, 13413–13416.

    CAS  Google Scholar 

  18. Chen, Y. J.; Wei, J.; Zhang, S. P.; Dai, H.; Yan, J. Y.; Lv, L. A portable multi-signal readout sensing platform based on plasmonic MXene induced signal amplification for point of care biomarker detection. Sens. Actuators B: Chem. 2022, 352, 131059.

    CAS  Google Scholar 

  19. Zhao, A. D.; Wang, B. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater. 2020, 8, 030701.

    CAS  Google Scholar 

  20. Khan, K.; Tareen, A. K.; Aslam, M.; Khan, M. F.; Shi, Z.; Ma, C. Y.; Shams, S. S.; Khatoon, R.; Mahmood, N.; Zhang, H. et al. Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Prog. Solid State Chem. 2020, 59, 100283.

    CAS  Google Scholar 

  21. Wang, D. W.; Yang, A. J.; Lan, T. S.; Fan, C. Y.; Pan, J. B.; Liu, Z.; Chu, J. F.; Yuan, H.; Wang, X. H.; Rong, M. Z. et al. Tellurene based chemical sensor. J. Mater. Chem. A 2019, 7, 26326–26333.

    CAS  Google Scholar 

  22. Cui, H. P.; Zheng, K.; Tao, L. Q.; Yu, J. B.; Zhu, X. Y.; Li, X. D.; Chen, X. P. Monolayer tellurene-based gas sensor to detect SF6 decompositions: A first-principles study. IEEE Electron Device Lett. 2019, 40, 1522–1525.

    CAS  Google Scholar 

  23. Khan, K.; Tareen, A. K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J. D.; Qing, D.; Ma, C. Y.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 2021, 9, 9461–9484.

    CAS  Google Scholar 

  24. Khan, K.; Tareen, A. K.; Iqbal, M.; Shi, Z.; Zhang, H.; Guo, Z. Y. Novel emerging graphdiyne based two dimensional materials: Synthesis, properties and renewable energy applications. Nano Today 2021, 39, 101207.

    CAS  Google Scholar 

  25. Guo, H. J.; Zheng, K.; Cui, H. P.; Yu, J. B.; Tao, L. Q.; Li, X. D.; Liao, C. R.; Xie, L.; Chen, X. P. Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: A theoretical insight. Appl. Surf. Sci. 2020, 532, 147451.

    CAS  Google Scholar 

  26. Khan, K.; Tareen, A. K.; Wang, L. D.; Aslam, M.; Ma, C. Y.; Mahmood, N.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Sensing applications of atomically thin group IV carbon siblings Xenes: Progress, challenges, and prospects. Adv. Funct. Mater. 2021, 31, 2005957.

    CAS  Google Scholar 

  27. Khan, S. A.; Ali, S.; Saeed, K.; Usman, M.; Khan, I. Advanced cathode materials and efficient electrolytes for rechargeable batteries: Practical challenges and future perspectives. J. Mater. Chem. A 2019, 7, 10159–10173.

    CAS  Google Scholar 

  28. Ma, C. Y.; Yin, P.; Khan, K.; Tareen, A. K.; Huang, R.; Du, J.; Zhang, Y.; Shi, Z.; Cao, R.; Wei, S. R. et al. Broadband nonlinear photonics in few-layer borophene. Small 2021, 17, 2006891.

    CAS  Google Scholar 

  29. Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

    CAS  Google Scholar 

  30. Tareen, A. K.; Khan, K.; Aslam, M.; Liu, X. K.; Zhang, H. Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Prog. Solid State Chem. 2021, 61, 100294.

    CAS  Google Scholar 

  31. Grazianetti, C.; Martella, C.; Molle, A. The xenes generations: A taxonomy of epitaxial single-element 2D materials. Phys. Status Solidi (RRL) 2020, 14, 1900439.

    CAS  Google Scholar 

  32. Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.

    Google Scholar 

  33. Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

    CAS  Google Scholar 

  34. Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.

    CAS  Google Scholar 

  35. Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.

    CAS  Google Scholar 

  36. Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021.

    CAS  Google Scholar 

  37. Wang, T. T.; Wang, H. D.; Kou, Z. K.; Liang, W. Y.; Luo, X. L.; Verpoort, F.; Zeng, Y. J.; Zhang, H. Xenes as an emerging 2D monoelemental family: Fundamental electrochemistry and energy applications. Adv. Funct. Mater. 2020, 30, 2002885.

    CAS  Google Scholar 

  38. Moon, J. S.; Seo, H. C.; Le, D.; Fung, H.; Schmitz, A.; Oh, T.; Kim, S.; Son, K. A.; Zehnder, D.; Yang, B. H. 11 THz figure-of-merit phase-change RF switches for reconfigurable wireless front-ends. In Proceedings of 0015 IEEE MTT-S Internatinnal Microwave Symposium, Phoenix, Phoenix, USA, 2015, pp 1–4.

  39. Da Silveira Firmiano, E. G.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Schreiner, W. H.; Leite, E. R. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 2014, 4, 1301380.

    Google Scholar 

  40. Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

    CAS  Google Scholar 

  41. Khan, K.; Tareen, A. K.; Aslam, M.; Zhang, Y. P.; Wang, R. H.; Ouyang, Z. B.; Gou, Z. Y.; Zhang, H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019, 11, 21622–21678.

    CAS  Google Scholar 

  42. Khan, K.; Tareen, A. K.; Iqbal, M.; Wang, L. D.; Ma, C. Y.; Shi, Z.; Ye, Z.; Ahmad, W.; Rehman Sagar, R. U.; Shams, S. S. et al. Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Prog. Solid State Chem. 2021, 63, 100326.

    CAS  Google Scholar 

  43. Khan, K.; Tareen, A. K.; Khan, Q. U.; Iqbal, M.; Zhang, H.; Guo, Z. Y. Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Mater. Chem. Front. 2021, 5, 6333–6391.

    CAS  Google Scholar 

  44. Sharma, P. K.; Ruotolo, A.; Khan, R.; Mishra, Y. K.; Kaushik, N. K.; Kim, N. Y.; Kaushik, A. K. Perspectives on 2D-borophene flatland for smart bio-sensing. Mater. Lett. 2022, 308, 131089.

    Google Scholar 

  45. O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J. N. Graphene dispersion and exfoliation in low boiling point solvents. J. Phys. Chem. C 2011, 115, 5422–5428.

    Google Scholar 

  46. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

    CAS  Google Scholar 

  47. Taylor, A. Biochemistry of tellurium. Biol. Trace Elem. Res. 1996, 55, 231–239.

    CAS  Google Scholar 

  48. Shi, Z.; Zhang, H. Q.; Khan, K.; Cao, R.; Xu, K. K.; Zhang, H. Two-dimensional selenium and its composites for device applications. Nano Res. 2022, 15, 104–122.

    CAS  Google Scholar 

  49. Shi, Z.; Zhang, H.; Khan, K.; Cao, R.; Zhang, Y.; Ma, C. Y.; Tareen, A. K.; Jiang, Y. F.; Jin, M. X.; Zhang, H. Two-dimensional materials toward Terahertz optoelectronic device applications. J. Photochem. Photobiol. C: Photochem. Rev. 2022, 51, 100473.

    CAS  Google Scholar 

  50. Liu, C.; Kim, H. S., Won, M., Jung, E.; Kim, J. S. Navigating 2D monoelemental materials (Xenes) for cancer nanomedicine. Matter 2020, 3, 12–13.

    Google Scholar 

  51. VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.

    CAS  Google Scholar 

  52. Wang, L. D.; Dai, C. D.; Jiang, L. F.; Tong, G. L.; Xiong, Y. H.; Khan, K.; Tang, Z. M.; Chen, X.; Zeng, H. B. Advanced devices for tumor diagnosis and therapy. Small 2021, 17, 2100003.

    CAS  Google Scholar 

  53. Zeraati, A. S.; Mirkhani, S. A.; Sun, P. C.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved synthesis of Ti3C2T MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021, 13, 3572–3580.

    Google Scholar 

  54. Bhattacharya, A.; Brea, R. J.; Niederholtmeyer, H.; Devaraj, N. K. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 2019, 10, 300.

    Google Scholar 

  55. Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Saw, P. E.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 2018, 30, 1802061.

    Google Scholar 

  56. Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896–11900.

    CAS  Google Scholar 

  57. Lin, Y.; Wu, Y.; Wang, R.; Tao, G.; Luo, P. F.; Lin, X.; Huang, G. M.; Li, J.; Yang, H. H. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem. Commun. 2018, 54, 8579–8582.

    CAS  Google Scholar 

  58. Li, C. C.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.

    Google Scholar 

  59. Dai, M. Z.; Huo, C. H.; Zhang, Q.; Khan, K.; Zhang, X. Y.; Shen, C. Electrochemical mechanism and structure simulation of 2D lithium-ion battery. Adv. Mheory Simul. 2018, 1, 1800023.

    Google Scholar 

  60. Khan, K.; Tareen, A. K.; Aslam, M.; Khan, Q.; Khan, S. A.; Khan, Q. U.; Saleemi, A. S.; Wang, R. H.; Zhang, Y. P.; Guo, Z. Y. et al. Novel two-dimensional carbon-chromium nitride-based composite as an electrocatalyst for oxygen reduction reaction. Front. Chem. 2019, 7, 738.

    CAS  Google Scholar 

  61. Ou, M. T.; Wang, X.; Yu, L.; Liu, C.; Tao, W.; Ji, X. Y.; Mei, L. The emergence and evolution of borophene. Adv. Sci. 2021, 8, 2001801.

    CAS  Google Scholar 

  62. Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 10803031.

    Google Scholar 

  63. Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.

    Google Scholar 

  64. Carrete, J.; Li, W.; Lindsay, L.; Broido, D. A.; Gallego, L. J.; Mingo, N. Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater. Res. Lett. 2016, 4, 204–211.

    CAS  Google Scholar 

  65. Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001.

    Google Scholar 

  66. Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhu, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592–3598.

    CAS  Google Scholar 

  67. Ogitsu, T.; Schwegler, E.; Galli, G. β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 2013, 113, 3425–3449.

    CAS  Google Scholar 

  68. Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.

    CAS  Google Scholar 

  69. Chen, X. P.; Yang, Q.; Meng, R. S.; Jiang, J. K.; Liang, Q. H.; Tan, C. J.; Sun, X. The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 2016, 4, 5434–5441.

    CAS  Google Scholar 

  70. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    CAS  Google Scholar 

  71. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

    CAS  Google Scholar 

  72. Wu, R. T.; Gozar, A.; Božović, I. Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. npj Quantum Mater. 2019, 4, 40.

    Google Scholar 

  73. Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

    CAS  Google Scholar 

  74. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  75. Majidi, R.; Karami, A. Electronic properties of bilayer and trilayer graphyne in the presence of electric field. Struct. Chem. 2014, 25, 853–858.

    CAS  Google Scholar 

  76. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    CAS  Google Scholar 

  77. Chowdhury, R.; Adhikari, S.; Rees, P.; Wilks, S. P.; Scarpa, F. Graphene-based biosensor using transport properties. Phys. Rev. B 2011, 83, 045401.

    Google Scholar 

  78. Alhaddad, A.; Adam, M. P.; Botsoa, J.; Dantelle, G.; Perruchas, S.; Gacoin, T.; Mansuy, C.; Lavielle, S.; Malvy, C.; Treussart, F. et al. Nanodiamond as a vector for siRNA delivery to ewing sarcoma cells. Small 2011, 7, 3087–3095.

    CAS  Google Scholar 

  79. Feng, L. Y.; Wu, L.; Qu, X. G. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 2013, 25, 168–186.

    CAS  Google Scholar 

  80. Kuang, C. Y.; Tang, G.; Jiu, T. G.; Yang, H.; Liu, H. B.; Li, B. R.; Luo, W. N.; Li, X. D.; Zhang, W. J.; Lu, F. S. et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett. 2015, 15, 2756–2762.

    CAS  Google Scholar 

  81. Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611–2615.

    CAS  Google Scholar 

  82. Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

    CAS  Google Scholar 

  83. Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

    CAS  Google Scholar 

  84. Liu, S. B.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y. H.; Chen, Y. Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 2009, 3, 3891–3902.

    CAS  Google Scholar 

  85. Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730–733.

    CAS  Google Scholar 

  86. Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

    Google Scholar 

  87. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Google Scholar 

  88. Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

    CAS  Google Scholar 

  89. Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.

    CAS  Google Scholar 

  90. Qian, X. M.; Liu, H. B.; Huang, C. S.; Chen, S. H.; Zhang, L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Self-catalyzed growth of large-area nanofilms of two-dimensional carbon. Sci. Rep. 2015, 5, 7756.

    Google Scholar 

  91. Liu, R.; Gao, X.; Zhou, J. Y.; Xu, H.; Li, Z. Z.; Zhang, S. Q.; Xie, Z. Q.; Zhang, J.; Liu, Z. F. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv. Mater. 2017, 29, 1604665.

    Google Scholar 

  92. Wang, T.; Huang, J. M.; Lv, H. F.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Ju, H. X.; Wu, X. J.; Tait, S. L.; Zhu, J. F. Kinetic strategies for the formation of graphyne nanowires via sonogashira coupling on Ag(111). J. Am. Chem. Soc. 2018, 140, 13421–13428.

    CAS  Google Scholar 

  93. Navaee, A.; Salimi, A.; Sham, T. K. Bipolar electrochemistry as a powerful technique for rapid synthesis of ultrathin graphdiyne nanosheets: Improvement of photoelectrocatalytic activity toward both hydrogen and oxygen evolution. Int. J. Hydrogen Energy 2021, 46, 12906–12914.

    CAS  Google Scholar 

  94. Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

    Google Scholar 

  95. Chen, L.; Liu, C. C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 2012, 109, 056804.

    Google Scholar 

  96. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Google Scholar 

  97. Fleurence, A.; Yamada-Takamura, Y. Insights into the spontaneous formation of silicene sheet on diboride thin films. Appl. Phys. Lett. 2017, 110, 041601.

    Google Scholar 

  98. Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

    CAS  Google Scholar 

  99. Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

    CAS  Google Scholar 

  100. Mojumder, R. H.; Islam, S.; Park, J. Germanene/2D-AlP van der Waals heterostructure: Tunable structural and electronic properties. AIP Adv. 2021, 11, 015126.

    CAS  Google Scholar 

  101. Muzychenko, D. A.; Oreshkin, A. I.; Legen’ka, A. D.; Van Haesendonck, C. Atomic insights into single-layer and bilayer germanene on Al(111) surface. Mater. Today Phys. 2020, 14, 100241.

    Google Scholar 

  102. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Sahin, H.; Ciraci, S. Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    CAS  Google Scholar 

  103. Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

    Google Scholar 

  104. Yao, Y. G.; Ye, F.; Qi, X. L.; Zhang, S. C.; Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401.

    Google Scholar 

  105. Ye, X. S.; Shao, Z. G.; Zhao, H. B.; Yang, L.; Wang, C. L. Intrinsic carrier mobility of germanene is larger than graphene’s: First-principle calculations. RSC Adv. 2014, 4, 21216–21220.

    CAS  Google Scholar 

  106. Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820–4824.

    CAS  Google Scholar 

  107. Zhuang, J. C.; Liu, C.; Zhou, Z. Y.; Casillas, G.; Feng, H. F.; Xu, X.; Wang, J. O.; Hao, W. C.; Wang, X. L.; Dou, S. X. et al. Dirac signature in germanene on semiconducting substrate. Adv. Sci. 2018, 5, 1800207.

    Google Scholar 

  108. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    CAS  Google Scholar 

  109. Pang, W. H.; Nishino, K.; Ogikubo, T.; Araidai, M.; Nakatake, M.; Le Lay, G.; Yuhara, J. Epitaxial growth of honeycomb-like stanene on Au(111). Appl. Surf. Sci. 2020, 517, 146224.

    CAS  Google Scholar 

  110. Mu, X.; Wang, J.; Sun, M. Two-dimensional black phosphorus: Physical properties and applications. Mater. Today Phys. 2019, 8, 92–111.

    Google Scholar 

  111. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Google Scholar 

  112. Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.

    CAS  Google Scholar 

  113. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    CAS  Google Scholar 

  114. Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

    Google Scholar 

  115. Wu, L. M.; Xie, Z. J.; Lu, L.; Zhao, J. L.; Wang, Y. Z.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Lu, S. B.; Guo, Z. N. et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 2018, 6, 1700985.

    Google Scholar 

  116. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Google Scholar 

  117. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    Google Scholar 

  118. Zeng, X. W.; Luo, M. M.; Liu, G.; Wang, X. S.; Tao, W.; Lin, Y. X.; Ji, X. Y.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 2018, 5, 1800510.

    Google Scholar 

  119. Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

    Google Scholar 

  120. Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150–161.

    CAS  Google Scholar 

  121. Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956–2968.

    CAS  Google Scholar 

  122. Ou, M. T.; Lin, C, C.; Wang, Y.; Lu, Y. T.; Wang, W. Y.; Li, Z. M.; Zeng, W. W.; Zeng, X. W.; Ji, X. Y.; Mei, L. Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. J. Control. Release 2022, 345, 755–769.

    CAS  Google Scholar 

  123. Chen, T.; Zeng, W. W.; Tie, C. J.; Yu, M.; Hao, H. S.; Deng, Y.; Li, Q. Q.; Zheng, H. R.; Wu, M. Y.; Mei, L. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics. Bioact. Mater. 2022, 10, 515–525.

    CAS  Google Scholar 

  124. Shi, Z. Q.; Li, Q. Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345–1356.

    CAS  Google Scholar 

  125. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

    CAS  Google Scholar 

  126. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 1963, 34, 1853–1860.

    CAS  Google Scholar 

  127. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    CAS  Google Scholar 

  128. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  129. Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 2015, 91, 085423.

    Google Scholar 

  130. Wang, G. L.; Zhang, J. Y.; Yang, J. B.; Wang, Y. Tuning the structural, electronic and adsorption properties of Au-embedded 2D WSe2 and Arsenene nanosheets: A DFT study. Comput. Theor. Chem. 2020, 1186, 112913.

    CAS  Google Scholar 

  131. Swetha, B.; Nagarajan, V.; Soltani, A.; Chandiramouli, R. Novel gamma arsenene nanosheets as sensing medium for vomiting agents: A first-principles research. Comput. Theor. Chem. 2020, 1185, 112876.

    CAS  Google Scholar 

  132. Aktürk, O. Ü.; Özçelik, V. O.; Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B 2015, 91, 235446.

    Google Scholar 

  133. Wang, Y. L.; Ding, Y. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: Insights from first-principles calculations. J. Phys.: Condens. Matter 2015, 27, 225304.

    Google Scholar 

  134. Liu, Y. S.; Wang, T.; Robertson, J.; Luo, J. B.; Guo, Y. Z.; Liu, D. M. Band structure, band offsets, and intrinsic defect properties of few-layer arsenic and antimony. J. Phys. Chem. C 2020, 124, 7441–7448.

    CAS  Google Scholar 

  135. Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.

    CAS  Google Scholar 

  136. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

    Google Scholar 

  137. Zhang, Z. Y.; Cao, H. N.; Zhang, J. C.; Wang, Y. H.; Xue, D. S.; Si, M. S. Orientation and strain modulated electronic structures in puckered arsenene nanoribbons. AIP Adv. 2015, 5, 067117.

    Google Scholar 

  138. Nagarajan, V.; Chandiramouli, R. Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: A first-principles study. Chem. Phys. 2017, 495, 35–41.

    CAS  Google Scholar 

  139. Chen, B.; Xue, L.; Han, Y.; Li, X. Q.; Yang, Z. Structural, mechanical, and electronic properties of nanotubes based on buckled arsenene: A first-principles study. Mater. Today Commun. 2020, 22, 100791.

    CAS  Google Scholar 

  140. Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

    CAS  Google Scholar 

  141. Gusmão, R.; Sofer, Z.; Bousš, D.; Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem., Int. Ed. 2017, 56, 14417–14422.

    Google Scholar 

  142. Zhang, L. J.; Gu, J. X.; Chen, Z. F. Structures and functions of two-dimensional materials: From theoretical prediction to experimental realization. Chin. Sci. Bull. 2021, 66, 563–579.

    Google Scholar 

  143. Wang, X.; Song, J.; Qu, J. L. Antimonene: From experimental preparation to practical application. Angew. Chem., Int. Ed. 2019, 58, 1574–1584.

    CAS  Google Scholar 

  144. Lei, T.; Liu, C.; Zhao, J. L.; Li, J. M.; Li, Y. P.; Wang, J. O.; Wu, R.; Qian, H. J.; Wang, H. Q.; Ibrahim, K. Electronic structure of antimonene grown on Sb2Te3(111) and Bi2Te3 substrates. J. Appl. Phys. 2016, 119, 015302.

    Google Scholar 

  145. Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.

    Google Scholar 

  146. Fickert, M.; Assebban, M.; Canet-Ferrer, J.; Abellán, G. Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets. 2D Mater. 2021, 8, 015018.

    CAS  Google Scholar 

  147. Aktürk, E.; Aktürk, O. Ü.; Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115.

    Google Scholar 

  148. Luo, B. C.; Wang, X. H.; Tian, E. K.; Li, G. W.; Li, L. T. Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. J. Mater. Chem. C 2015, 3, 8625–8633.

    CAS  Google Scholar 

  149. Shiraz, A. K.; Goharrizi, A. Y. Optical properties of buckled bismuthene. Phys. Status Solidi (b) 2020, 257, 1900408.

    Google Scholar 

  150. Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)7×7. Phys. Rev. Lett. 2004, 93, 105501.

    CAS  Google Scholar 

  151. Kaminski, D.; Poodt, P.; Aret, E.; Radenovic, N.; Vlieg, E. Surface alloys, overlayer and incommensurate structures of Bi on Cu(111). Surf. Sci. 2005, 575, 233–246.

    CAS  Google Scholar 

  152. Wang, X. X.; Shen, N. F.; Yang, X. D.; Wang, B. L. Bismuthene: Epitaxially grown on MoTe2 and its grain boundary. J. Cryst. Growth 2020, 546, 125787.

    CAS  Google Scholar 

  153. Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

    Google Scholar 

  154. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Google Scholar 

  155. Doi, T.; Nakao, K.; Kamimura, H. The valence band structure of tellurium. I. the k·p perturbation method. J. Phys. Soc. Jpn. 1970, 28, 36–43.

    CAS  Google Scholar 

  156. Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.

    Google Scholar 

  157. Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619–4623.

    CAS  Google Scholar 

  158. Chen, J. L.; Dai, Y. W.; Ma, Y. Q.; Dai, X. Q.; Ho, W.; Xie, M. H. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale 2017, 9, 15945–15948.

    CAS  Google Scholar 

  159. Paulauskas, T.; Sen, F. G.; Sun, C.; Longo, P.; Zhang, Y.; Hla, S. W.; Chan, M. K. Y.; Kim, M. J.; Klie, R. F. Stabilization of a monolayer tellurene phase at CdTe interfaces. Nanoscale 2019, 11, 14698–14706.

    CAS  Google Scholar 

  160. Rastgou, A.; Soleymanabadi, H.; Bodaghi, A. DNA sequencing by borophene nanosheet via an electronic response: A theoretical study. Microelectron. Eng. 2017, 169, 9–15.

    CAS  Google Scholar 

  161. Bhuvaneswari, R.; Maria, J. P.; Nagarajan, V.; Chandiramouli, R. Graphdiyne nanosheets as a sensing medium for formaldehyde and formic acid—A first-principles outlook. Comput. Theor. Chem. 2020, 1176, 112751.

    CAS  Google Scholar 

  162. Mortazavi, B.; Rahaman, O.; Makaremi, M.; Dianat, A.; Cuniberti, G.; Rabczuk, T. First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E:Low-Dimens. Syst. Nanostruct. 2017, 87, 228–232.

    CAS  Google Scholar 

  163. Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Phosphorene and phosphorene-based materials—Prospects for future applications. Adv. Mater. 2016, 28, 8586–8617.

    CAS  Google Scholar 

  164. Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

    Google Scholar 

  165. Hu, A. M.; Zhang, X. H.; Xiao, W. Z.; Meng, B. Structural, electronic, and optic properties of Se nanotubes. Phys. B:Condens. Matter 2022, 624, 413417.

    CAS  Google Scholar 

  166. Rao, Y. F.; Zheng, K.; Guo, H. J.; Yu, J. B.; Chen, X. P. 2D β-tellurene: Increase sensitivity toward toxic cyanide molecules. Vacuum 2021, 194, 110619.

    CAS  Google Scholar 

  167. Nath, S.; Bandyopadhyay, A.; Sen, S.; Jana, D. First principles investigation of structural, electronic and optical properties of synthesized radiaannulene oligomers for, 6, 6, 12-graphyne. J. Phys. Chem. Solids 2021, 153, 109990.

    CAS  Google Scholar 

  168. Qin, X. F.; Shao, Z. G.; Wang, C. L.; Yang, L. Electronic and optical properties of lithium-decorated δ-graphyne from first principles. Optik 2020, 216, 164898.

    CAS  Google Scholar 

  169. Tang, Y. N.; Chen, W. G.; Wang, Z. W.; Zhao, G.; Cui, Y. Q.; Li, Z. H.; Li, Y.; Feng, Z.; Dai, X. Q. Formation, electronic, gas sensing and catalytic characteristics of graphene-like materials: A first-principles study. Appl. Surf. Sci. 2020, 530, 147178.

    CAS  Google Scholar 

  170. Kochaev, A. I.; Meftakhutdinov, R. M.; Sibatov, R. T.; Timkaeva, D. A. Optical and thermoelectric properties of graphenylene and octagraphene nanotubes from first-principles calculations. Comput. Mater. Sci. 2021, 186, 109999.

    CAS  Google Scholar 

  171. Duo, Y. H.; Xie, Z. J.; Wang, L. D.; Abbasi, N. M.; Yang, T. Q.; Li, Z. H.; Hu, G. X.; Zhang, H. Borophene-based biomedical applications: Status and future challenges. Coord. Chem. Rev. 2021, 427, 213549.

    CAS  Google Scholar 

  172. Fazilaty, M.; Pourahmadi, M.; Shayesteh, M. R.; Hashemian, S. Investigating and comparing structural, electronic and optical properties of χ3-borophene in monolayer, nanoribbon and nanotube modes as a transparent metal. J. Phys. Chem. Solids 2021, 148, 109683.

    CAS  Google Scholar 

  173. Zhour, K.; Otero-Mato, J. M.; El Haj Hassan, F.; Fahs, H.; Vaezzadeh, M.; López-Lago, E.; Gallego, L. J.; Varela, L. M. Electronic and optical properties of borophene and graphene with an adsorbed ionic liquid: A density functional theory study. J. Mol. Liq. 2020, 316, 113803.

    CAS  Google Scholar 

  174. Abdullah, N. R.; Kareem, M. T.; Rashid, H. O.; Manolescu, A.; Gudmundsson, V. Spin-polarised DFT modeling of electronic, magnetic, thermal and optical properties of silicene doped with transition metals. Phys. E: Low-Dimens. Syst. Nanostruct. 2021, 129, 114644.

    CAS  Google Scholar 

  175. Chowdhury, S.; Jana, D. A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 2016, 79, 126501.

    Google Scholar 

  176. Chen, X. P.; Sun, X.; Jiang, J. K.; Liang, Q. H.; Yang, Q.; Meng, R. S. Electrical and optical properties of germanene on single-layer BeO substrate. J. Phys. Chem. C 2016, 120, 20350–20356.

    CAS  Google Scholar 

  177. Yan, J. A.; Gao, S. P.; Stein, R.; Coard, G. Tuning the electronic structure of silicene and germanene by biaxial strain and electric field. Phys. Rev. B 2015, 91, 245403.

    Google Scholar 

  178. Barhoumi, M.; Sfina, N.; Lazaar, K.; Said, M. Electronic and optical properties of W-Sn-Z and W ′-Sn-W ′ monolayers using density functional theory. Solid State Commun. 2020, 321, 114016.

    CAS  Google Scholar 

  179. Fadaie, M.; Dideban, D.; Gülseren, O. Electronic and optical properties of stanane and armchair stanane nanoribbons. Appl. Phys. A 2020, 126, 460.

    CAS  Google Scholar 

  180. Kecik, D.; Özçelik, V. O.; Durgun, E.; Ciraci, S. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound. Phys. Chem. Chem. Phys. 2019, 21, 7907–7917.

    CAS  Google Scholar 

  181. Wang, X.; Yu, X. T.; Song, J.; Huang, W. C.; Xiang, Y. J.; Dai, X. Y.; Zhang, H. Two-dimensional semiconducting antimonene in nanophotonic applications—A review. Chem. Eng. J. 2021, 406, 126876.

    CAS  Google Scholar 

  182. Han, R. Y.; Feng, S.; Sun, D. M.; Cheng, H. M. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inf. Sci. 2021, 64, 140402.

    Google Scholar 

  183. Bhuvaneswari, R.; Nagarajan, V.; Chandiramouli, R. Chemiresistive β-Tellurene nanosheets for detecting 2-Butanone and 2-Pentanone—A first-principles study. Mater. Today Commun. 2021, 26, 101758.

    CAS  Google Scholar 

  184. Choi, J. R.; Yong, K. W.; Choi. J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026.

    CAS  Google Scholar 

  185. Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    CAS  Google Scholar 

  186. Leenaerts, O.; Partoens, B.; Peeters, F. M. Tunable double Dirac cone spectrum in bilayer α-graphyne. Appl. Phys. Lett. 2013, 103, 013105.

    Google Scholar 

  187. Liu, J. M.; Shen, X. M.; Baimanov, D.; Wang, L. M.; Xiao, Y. T.; Liu, H. B.; Li, Y. L.; Gao, X. F.; Zhao, Y. L.; Chen, C. Y. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 2647–2654.

    CAS  Google Scholar 

  188. Ebadi, M.; Reisi-Vanani, A. Methanol and carbon monoxide sensing and capturing by pristine and Ca-decorated graphdiyne: A DFT-D2 study. Phys. E: Low-Dimens. Syst. Nanostruct. 2021, 125, 114425.

    CAS  Google Scholar 

  189. Nagarajan, V.; Dharani, S.; Chandiramouli, R. Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput. Theor. Chem. 2018, 1125, 86–94.

    CAS  Google Scholar 

  190. Chang, F.; Huang, L. J.; Guo, C. Z.; Xie, G. M.; Li, J. Q.; Diao, Q. Z. Graphdiyne-based one-step DNA fluorescent sensing platform for the detection of Mycobacterium tuberculosis and its drug-resistant genes. ACS Appl. Mater. Interfaces 2019, 11, 35622–35629.

    CAS  Google Scholar 

  191. Alesheikh, S.; Shahtahmassebi, N.; Roknabadi, M. R.; Shahri, R. P. Interaction of nucleobases with silicene nanoribbon: A density functional approach. Comput. Theor. Chem. 2017, 1103, 32–37.

    CAS  Google Scholar 

  192. Chang, Y. Z.; Lin, J. N.; Li, S. D.; Liu, H. Y. Adsorption of greenhouse gases (methane and carbon dioxide) on the pure and Pd-adsorbed stanene nanosheets: A theoretical study. Surf. Interfaces 2021, 22, 100878.

    CAS  Google Scholar 

  193. Chia, H. L.; Sturala, J.; Webster, R. D.; Pumera, M. Functionalized 2D germanene and silicene enzymatic system. Adv. Funct. Mater. 2021, 30, 2011125.

    Google Scholar 

  194. Taşaltin, C.; Türkmen, T. A.; Taşaltin, N.; Karakuş, S. Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 Borophene. J. Mater. Sci.: Mater. Electron. 2021, 32, 10750–10760.

    Google Scholar 

  195. Wang, C. X.; Yu, P.; Guo, S. Y.; Mao, L. Q.; Liu, H. B.; Li, Y. L. Graphdiyne oxide as a platform for fluorescence sensing. Chem. Commun. 2016, 52, 5629–5632.

    CAS  Google Scholar 

  196. Li, Y. X.; Li, X. H.; Meng, Y. C.; Hun, X. Photoelectrochemical platform for MicroRNA let-7a detection based on graphdiyne loaded with AuNPs modified electrode coupled with alkaline phosphatase. Biosens. Bioelectron. 2019, 130, 269–275.

    CAS  Google Scholar 

  197. Li, X. H.; Li, Y. X.; Zhang, J. Y.; Meng, Y. C.; Yu, X. J.; Wang, X.; Hun, X. Molybdenum disulfide/graphdiyne-based photoactive material derived photoelectrochemical strategy for highly sensitive microRNA assay. Sens. Actuators B: Chem. 2019, 297, 126808.

    CAS  Google Scholar 

  198. Wang, H.; Deng, K. Q.; Xiao, J.; Li, C. X.; Zhang, S. W.; Li, X. F. A sandwich-type photoelectrochemical sensor based on tremella-like graphdiyne as photoelectrochemical platform and graphdiyne oxide nanosheets as signal inhibitor. Sens. Actuators B: Chem. 2020, 304, 127363.

    CAS  Google Scholar 

  199. Yew, Y. T.; Sofer, Z.; Mayorga-Martinez, C. C.; Pumersa, M. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Fron. 2017, 1, 1130–1136.

    CAS  Google Scholar 

  200. Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 2018, 10, 5060–5064.

    CAS  Google Scholar 

  201. Jiang, H. Y.; Xia, Q.; Liu, D. J.; Ling, K. Calcium-cation-doped polydopamine-modified 2D black phosphorus nanosheets as a robust platform for sensitive and specific biomolecule sensing. Anal. Chim. Acta 2020, 1121, 1–10.

    CAS  Google Scholar 

  202. Singh, M. K.; Pal, S.; Verma, A.; Prajapati, Y. K.; Saini, J. P. Highly sensitive antimonene-coated black phosphorous-based surface plasmon-resonance biosensor for DNA hybridization: Design and numerical analysis. J. Nanophotonics 2020, 14, 046015.

    CAS  Google Scholar 

  203. Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

    CAS  Google Scholar 

  204. Mayorga-Martinez, C. C.; Latiff, N. M.; Eng, A. Y. S.; Sofer, Z.; Pumera, M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal. Chem. 2016, 88, 10074–10079.

    CAS  Google Scholar 

  205. Xue, T. Y.; Bongu, S. R.; Huang, H.; Liang, W. Y.; Wang, Y. W.; Zhang, F.; Liu, Z. Y.; Zhang, Y. P.; Zhang, H.; Cui, X. Q. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 2220, 56, 7041–7044.

    Google Scholar 

  206. Song, Z.; Ang, W. L.; Sturala, J.; Mazanek, V.; Marvan, P.; Sofer, Z.; Ambrosi, A.; Ding, C. F.; Luo, X. L.; Bonanni, A. Functionalized germanene-based nanomaterials for the detection of single nucleotide polymorphism. ACS Appl. Nano Mater. 2021, 4, 5164–5175.

    CAS  Google Scholar 

  207. Kumar, V.; Brent, J. R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A. G.; Lewis, E. A.; Rooney, A. P.; Nguyen, L.; Zhong, X. L. et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 2016, 8, 22860–22868.

    CAS  Google Scholar 

  208. Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem. 2017, 250, 601–607.

    CAS  Google Scholar 

  209. Peng, J.; Lai, Y. Q.; Chen, Y. Y.; Xu, J.; Sun, L. P.; Weng, J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 2017, 13, 1603589.

    Google Scholar 

  210. Mani, G. K.; Nimura, Y.; Tsuchiya, K. Advanced artificial electronic skin based pH sensing system for heatstroke detection. ACS Sens. 2020, 5, 911–916.

    CAS  Google Scholar 

  211. Fatima, B.; Hussain, D.; Bashir, S.; Hussain, H. T.; Aslam, R.; Nawaz, R.; Rashid, H. N.; Bashir, N.; Majeed, S.; Ashiq, M. N. et al. Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater. Sci. Eng. C: Mater. Biol. Appl. 2020, 117, 111296.

    CAS  Google Scholar 

  212. Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

    Google Scholar 

  213. Lee, H. U.; Park, S. Y.; Lee, S. C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K. S.; Park, H. G. et al. Black phosphorus (BP) nanodots for potential biomedical applications. Small 2016, 12, 214–219.

    CAS  Google Scholar 

  214. Qian, X. Q.; Gu, Z.; Cheng, Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017, 4, 800–816.

    CAS  Google Scholar 

  215. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Google Scholar 

  216. Yang, D.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Gai, S. L.; Li, C. X.; He, F.; Lin, J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 2017, 27, 1700371.

    Google Scholar 

  217. Yan, W. J.; Wang, X. H.; Yao, Q.; Qiao, P. F.; Marion, C. L. Detection of cancer cells based on fluorescence quenching property of black phosphorus. Chin. J. Lasers 2018, 45, 0207030.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82002936), Guangdong Scientific and Technological Project (Nos. 2019B1515120043, 2020A151501612, 2021A1515220109, 2022B1515020093, 2020A1515010787 and 2020A1515110749), the Science and Technology Innovation Commission of Shenzhen (No. KCXFZ20201221173413038), the Longhua District Science and Innovation Commission Project Grants of Shenzhen (No. JCYJ201904). Authors also acknowledge the support from the Instrumental Analysis Center of Shenzhen University (Xili Campus).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongjian Xie or Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Liu, Z., Xie, Z. et al. Emerging monoelemental 2D materials (Xenes) for biosensor applications. Nano Res. 16, 7030–7052 (2023). https://doi.org/10.1007/s12274-023-5418-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5418-3

Keywords

Navigation