Skip to main content

Immobilization of Molecular Assemblies on 2D Nanomaterials for Electrochemical Biosensing Applications

  • Chapter
  • First Online:
Immobilization Strategies

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Immobilization or surface functionalization of molecular assemblies is of tremendous importance in the field of building functional micro/nanolevel devices for a wide range of applications starting from sensing, catalysis, photovoltaics, fuel cells and biomaterials to molecular electronics. Research in this area contributes as well to provide fundamental understanding of electron transfer, controlling reactions at surfaces, and tailoring surface properties. During the last few decades, we have witnessed significant advances in the area of electronics which has resulted in the development of highly compatible and simple electrical transducers from which we can process signals in a highly efficient manner than ever before. Biosensors are analytical tools whose applications stretch out in areas like health care, environment, agriculture and biotechnology. Electrochemical transducers are of highly advantageous in the fabrication of biosensors owing to their simplicity, amenability for field measurements and miniaturization, adaptability for wireless transmission and so on. The challenging task in the fabrication of biosensors is to effectively immobilize/functionalize the molecular recognition assemblies on to the electrode surface with their properties intact. High surface area materials with suitable functional groups that can be electrically wired to electrode surfaces efficiently for effective sensing are required for the fabrication of biosensors. Currently, two-dimensional (2D) materials have evolved as promising potential candidates in electrically transduced chemical sensing. They provide a large surface-to-volume ratio for substrate–analyte interactions when compared to their 0D, 1D and 3D analogues, which is essential for improving sensitivity and through the incorporation of known recognition centres like enzymes, or ligands, onto the surface of 2D materials selectivity is ensured. Apart from the well-studied 2D nanomaterial graphene, a diverse range of 2D materials like phosphorene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMDCs), layered metal oxides, 2D metal–organic frameworks (MOFs), covalent organic frameworks (COFs) and other 2D compounds are being explored for biosensing recently. This book chapter will describe how the molecular recognition moieties like enzymes, ligands, ionophores, antigens/antibodies, host molecules, etc., would be immobilized on the 2D materials. Case studies from the literature and few examples from the authors’ work would be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-CN:

4-chloro-1-naphthol

AAB:

Antiapolipoprotein

AC:

Alternate current

AFP:

α-fetoprotein

ALD:

Atomic layer deposition

AuNP:

Gold nanoparticles

BP:

Black Phosphorous

BSA:

Bovine serum albumin

CA125:

Cancer antigen 125

CEA:

Carcinoembryonic antigen

Chox:

Cholesterol oxidase

CPE:

Carbon paste electrode

CS:

Chitosan

CV:

Cyclic voltammetry

CWE:

Coated wire electrodes

DPV:

Differential pulse voltammetry

E:

Potential

EIS:

Electrochemical impedance spectroscopy

FcMeOH:

Ferrocene methanol

FET:

Field effect transistor

GA:

Glucoamylase

GC:

Glassy carbon

GO:

Graphene oxide

GOx:

Glucose oxidase

Gr:

Graphene

GTA:

Glutaraldehyde

Hb:

Haemoglobin

HCG:

Human chorionic gonadotropin

HET:

Heterogeneous electron transfer

HQ:

Hydroquinone

HRP:

Horseradish peroxidase

IgG:

Immunoglobulin G

LACC:

Laccase

LOD:

Limit of detection

Mb:

Myoglobin

MCH:

Mercapto hexanol

MMP-2:

Metalloproteinase-2

MOF:

Metal−organic frameworks

MPA:

Mercapto propionic acid

MXenes:

Transition metal carbides/nitrides

NPV:

Normal pulse voltammetry

NW:

Nanowire

OTA:

Ochratoxin-A

PAA:

Polyacrylic acid

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEI:

Polyethyleneimine

PFIL:

Polyethyleneimine functionalized ionic liquid

PLD:

Pulsed laser deposition

PLL:

Polylysine

PSA:

Prostate-specific antigen

PSS:

poly(styrenesulfonate)

PTCA:

Perylene tetracarboxylic acid

RGO:

Reduced graphene oxide

SWV:

Square-wave voltammetry

TMDC:

Transition metal dichalcogenides

TMOs:

Transition metal oxides

TYR:

Tyrosinase

V:

Volt

References

  • Akhavan O, Ghaderi E, Rahighi R, Abdolahad M (2014) Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 79:654–663

    Article  CAS  Google Scholar 

  • Ali MA, Singh C, Mondal K, Srivastava S, Sharma A, Malhotra BD (2016) Mesoporous few-layer graphene platform for affinity biosensing application. ACS Appl Mater Interf 8:7646–7656

    Article  CAS  Google Scholar 

  • Alwarappan S, Liu C, Kumar A, Li CZ (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924

    Article  CAS  Google Scholar 

  • Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77:75–81

    Article  CAS  Google Scholar 

  • Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  CAS  Google Scholar 

  • Balendhran S, Walia S, Alsaif M, Nguyen E, Ou J, Zhuiykov S, Sriram S, Bhaskaran M, Kalantar-Zadeh K (2013) Field effect biosensing platform based on 2D α-MoO3. ACS Nano 7:9753−9760

    Google Scholar 

  • Banica FG (2002). Chemical Sens Biosens Fundamentals Appl. https://doi.org/10.1002/9781118354162

    Article  Google Scholar 

  • Beer PD, Mortimer RJ Stradiotto NR, Szemes F, Weightman JS (1995) Electrochemical and spectral recognition of chloride ions by novel acyclic ruthenium(II) bipyridyl receptor complexes. Anal Proc 32(12):485–527

    Google Scholar 

  • Benameur MM et al (2011) Visibility of dichalcogenide nanolayers. Nanotechnology 22:125706

    Article  CAS  Google Scholar 

  • Benvidi A, Firouzabadi AD, Moshtaghiun SM, Mazloum-Ardakani M, Tezerjani MD (2015) Ultrasensitive DNA sensorbased on gold nanoparticles/reduced graphene oxide/glassycarbon electrode. Anal Biochem 484(1):24–30

    Article  CAS  Google Scholar 

  • Berchmans S, Venkatesan M, Vusa CSR, Arumugam P (2018) PAMAM dendrimer modified reduced graphene oxide postfunctionalized by horseradish peroxidase for biosensing H2O2. Methods Enzymol 609:143–170

    Article  CAS  Google Scholar 

  • Bobacka J (2006) Conduct Polym Solid-State Ion-Sel Electrodes Electroanal 18:7–18

    CAS  Google Scholar 

  • Brent JR, Lewis DJ, Lorenz T, Lewis EA, Savjani N, Haigh SJ, Seifert G, Derby B, O’Brien P (2015) J. Am tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV-VI main group two-dimensional atomic crystals. Chem Soc 137:12689

    Google Scholar 

  • Cao S, Zhang L, Chai Y, Yuan R (2013) An Integrated sensing system for detection of cholesterol based on TiO2-graphene-Pt-Pd hybrid nanocomposites. Biosens Bioelectron 42:532–538

    Article  CAS  Google Scholar 

  • Chen H, Zhang J, Gao Y, Liu S, Koh K, Zhu X, Yin Y (2015) Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens Bioelectron 68:777–782

    Article  CAS  Google Scholar 

  • Chen Y, Ren R, Pu H, Chang J, Mao S, Chen J (2017) Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens Bioelectron 89:505–510

    Article  CAS  Google Scholar 

  • Chen Y, Li Y, Sun D, Tian D, Zhang J, Zhu J (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604

    Article  CAS  Google Scholar 

  • Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angewande Chemie Int Edn 53:7860

    Article  CAS  Google Scholar 

  • Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  CAS  Google Scholar 

  • Crespo GA, Macho S, Bobacka J, Rius FX (2009) Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal Chem 81:676–681

    Article  CAS  Google Scholar 

  • Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322

    Article  CAS  Google Scholar 

  • Daniel B, Chem JP (2011) A powerful method for surface modification electro grafting. Chem Soc Rev 40:3995–4048

    Google Scholar 

  • Das M, Sumana G, Nagarajan R, Malhotra BD (2010) Zirconia based nucleic acid sensor for mycobacterium tuberculosis detection. Appl Phys Lett 96:133703

    Article  CAS  Google Scholar 

  • Deep Jariwala VK, Sangwan Lincoln J, Lauhon Tobin J, Marks, Mark C, Hersam (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120

    Google Scholar 

  • Dey RS, Raj CR (2010) Development of an amperometric cholesterol biosensor based on graphene-pt nanoparticle hybrid material. J Phys Chem 114:21427–21433

    CAS  Google Scholar 

  • Dong H, Zhu Z, Ju H, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33:228–232

    Article  CAS  Google Scholar 

  • Eda G et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Letter 11:5111–5116

    Article  CAS  Google Scholar 

  • Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Article  CAS  Google Scholar 

  • Gadzekpo VPY, Hungerford JM, Kadry AM, Ibrahim YA, Christian GD (1985) Lipophillic lithium ion carrier in a lithium ion selective electrode. Anal Chem 57(2):493–495

    Article  CAS  Google Scholar 

  • Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297

    Article  CAS  Google Scholar 

  • Gordon RA, Yang D, Crozier ED, Jiang DT, Frindt RF (2002) Structures of exfoliated single layers of WS2 MoS2 and MoSe2 in aqueous suspension. Phys Rev B 65:125407

    Article  CAS  Google Scholar 

  • Han JT, Jang JI, Kim H, Hwang JY, Yoo HK, Woo JS, Choi S, Kim HY, Jeong HJ, Jeong SY, Baeg KJ, Cho K, Lee GW, (2014) Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation. Sci Rep 4 Article number 5133

    Google Scholar 

  • He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA, Ding S, Karunakaran C, Claussen JC (2017) Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl Mater Interf 9:12719–12727

    Article  CAS  Google Scholar 

  • Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105(9):1–4

    Article  CAS  Google Scholar 

  • Hendry SP, Higgins IJ, Bannister JV (1990) Amperometric biosensors. J Biotechnol 15:229–238

    Article  CAS  Google Scholar 

  • Hernández R, Riu J, Bobacka J, Vallés C, Jiménez P, Benito AM, Maser WK, Rius FXC (2012) Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes. J Phys Chem C 116:22570−22578

    Google Scholar 

  • Hou L, Cui Y, Xu M, Gao Z, Huang J, Tang D (2013) Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens Bioelectron 47:149–156

    Article  CAS  Google Scholar 

  • Hu J, Stein A, Bühlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal Chem 76:102–114

    Article  CAS  Google Scholar 

  • Hu J, Zou XU, Stein A, Buhlmann P (2014) Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal Chem 86:7111–7118

    Article  CAS  Google Scholar 

  • Hu Y, Guo L (2015) Rapid preparation of perovskite lead niobate nanosheets by ultrasonic-assisted exfoliation for enhanced visible-light-driven photocatalytic hydrogen production. ChemCatChem 7:584–587

    Article  CAS  Google Scholar 

  • Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014a) Sub-femto molar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202

    Article  CAS  Google Scholar 

  • Huang KJ, Liu YJ, Wang HB, Gan T, Liu YM, Wang LL (2014b) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens Actuators B 191:828–836

    Article  CAS  Google Scholar 

  • Huang KJ, Liu YJ, Cao JT, Wang HB (2014c) An aptamer electrochemical assay for sensitive detection of immunoglobulin E based on tungsten disulfide−graphene composites and gold nanoparticles. RSC Adv 4:36742

    Article  CAS  Google Scholar 

  • Huang KJ, Liu YJ, Zhang JZ, Liu YM (2014d) A novel aptamer sensor based on layered tungsten disulfide nanosheets and Au nanoparticles amplification for 17β-estradiol detection. Anal Methods 6:8011–8017

    Article  CAS  Google Scholar 

  • Joyce BA (1985) Molecular beam epitaxy. Rep Prog Phys 48:1637–1697

    Article  CAS  Google Scholar 

  • Justin GJ, Chem SC (2011) The molecular level modification of surfaces from self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 40:2704–2718

    Article  CAS  Google Scholar 

  • Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  • Kappera R, Voiry D, Yalcin S et al (2014) Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater 13:1128–1134

    Article  CAS  Google Scholar 

  • Kelly RG, Owen AE (1986) Solid-state Ion sensors. J Chem Soc Faraday Trans I 82:1195–1208

    Article  CAS  Google Scholar 

  • Khoshfetrat SM, Mehrgardi MA (2017) Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 114:24–32

    Article  CAS  Google Scholar 

  • Kim Y, Song JG, Park YJ, Ryu GH, Lee SJ, Kim JS, Jeon PJ, Lee CW, Woo WJ, Choi T, Jung H, Lee HBR, Myoung JM, Im S, Lee Z, Ahn JH, Kim PJ (2016) Self-limiting layer synthesis of transition metal dichalcogenide. Sci Rep 6:18754

    Article  CAS  Google Scholar 

  • Kim HU, Kim H, Ahn C, Kulkarni A, Jeon M, Yeom GY, Lee MH, Kim T (2015) In situ synthesis of MoS2 on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Adv 5(14):10134–10138

    Article  CAS  Google Scholar 

  • Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, Park J, Na K, Bae KH, Kyun Kim H, Bien F, Young Lee C, Park JU (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 8:14997

    Article  Google Scholar 

  • Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    Article  CAS  Google Scholar 

  • Kumar V, Brent JR, Shorie M, Kaur H, Chadha G, Thomas AG, Lewis EA, Rooney AP, Nguyen L, Zhong XL, Burke MG, Haigh SJ, Walton A, McNaughter PD, Tedstone AA, Savjani N, Muryn CA, O’Brien P, Ganguli AK, Lewis DJ, Sabherwal P (2016) Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin a cardiovascular disease biomarker. ACS Appl Mater Interf 8:22860–22868

    Article  CAS  Google Scholar 

  • Lai CZ, Fierke MA, Stein A, Buhlmann P (2007) Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem 79:4621–4626

    Article  CAS  Google Scholar 

  • Late DJ, Liu B, Matte SR, Rao CNR, Dravid VP (2012) Adv Func Mater 22:1894

    Article  CAS  Google Scholar 

  • Lee J, Dak P, Lee Y, Park H, Choi W, Alam M, Kim S (2015) Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep 4:7352

    Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  • Li Z, Wong SL (2017) Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Eng C 70(2):1095–1106

    Article  CAS  Google Scholar 

  • Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens Actuators B 233:100–106

    Article  CAS  Google Scholar 

  • Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of haemoglobin immobilized on MXene-Ti3C2. Sens Actuators 218:60–66

    Article  CAS  Google Scholar 

  • Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21(32):12034

    Article  CAS  Google Scholar 

  • Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photo detectors based on monolayer MoS2. Nat Nanotechnol 8(7):497–501

    Article  CAS  Google Scholar 

  • Lu Q, Dong X, Li LJ, Hu X (2010) Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nano platelet-enzyme composite film. Talanta 82:1344–1348

    Article  CAS  Google Scholar 

  • Luo Y, Li Z, Zhu C, Cai X, Qu L, Du D, Lin Y (2018) Graphene-like metal-free 2D nanosheets for cancer imaging and theranostics. Trends Biotechnol 36(11):1145–1156

    Article  CAS  Google Scholar 

  • Mahesh KV, Rashada R, Kiran M, Peer Mohamed A, Ananthakumar S (2015) Shear induced micromechanical synthesis of Ti3SiC2 MAXene nanosheets for functional applications. RSC Adv 5:51242

    Article  CAS  Google Scholar 

  • Mahjouri-Samani M, Gresback R, Tian M, Wang K, Puretzky AA, Rouleau CM, Eres G, Ivanov IN, Xiao K, McGuire MA, Duscher G, Geohegan DB (2014) Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv Func Mater 24:6365

    Article  CAS  Google Scholar 

  • Manju V, RaoVusa CS, Berchmans S, Arumugam P (2016) Electrochemical amination of graphene using nano sized PAMAM dendrimer for sensing applications. RSC Adv 6:33409–33418

    Article  CAS  Google Scholar 

  • Mattheiss LF (1973) Band structures of transition-metal dichalcogenide layer compounds. Phys Rev 8:3719–3740

    Article  CAS  Google Scholar 

  • Mayorga-Martinez CC, MohamadLatiff N, Eng AY, Sofer Z, Pumera M (2016) Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal Chem 88:10074–10079

    Article  CAS  Google Scholar 

  • Metzger E, Dohner R, Simon W, Vonderschmitt, DJ, Gautschi K (1987) Lithium/sodium ion concentration ratio measurements in blood serum with lithium and sodium ion selective liquid membrane electrodes. Anal Chem 59(13):1600

    Google Scholar 

  • Migdalski J, Blaz T, Lewenstam A (1996) Conducting polymer-based ion-selective electrodes. Anal Chim Acta 322:141–149

    Article  CAS  Google Scholar 

  • Nasuha R, Carmen C, Mayorga-Martinez, ZS, Pumera M (2017) 1T-phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: application on second-generation enzyme-based biosensor. ACS Appl Mater Interf 9:40697−40706. https://doi.org/10.1021/acsami.7b13090

  • Nicolosi V, Chhowalla M, Kanatzidis M, G, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419

    Google Scholar 

  • Nikolskii BP, Materova EA (1985) Solid contact in membrane ion-selective electrodes. Ion-Sel Electrode Rev Elsevier Great Britain 7:3−39

    Google Scholar 

  • Novoselov KS et al (2015) Two-dimensional atomic crystals. Proc Nat Acad Sci USA 102(30):10451–10453

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Oliveira TM, Barroso MF, Morais S, Araujo M, Freire C, de Lima-Neto P, Correia AN, Oliveira MB, Delerue-Matos C (2014) Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbonpaste electrode for carbamates detection. Bioelectrochemistry 98:20–29

    Article  CAS  Google Scholar 

  • Ping J, Wang Y, Wu J, Ying Y (2011) Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun 13:1529–1532

    Article  CAS  Google Scholar 

  • Podberezskaya NV, Magarill SA, Pervukhina NV, Borisov SV (2001) Crystal chemistry of dichalcogenides MX2. J Struct Chem 42:654–681

    Article  CAS  Google Scholar 

  • Pradhan SK, Xiao B, Pradhan AK (2016) Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells. Sol Energy Mater Sol Cells 144:117–127

    Article  CAS  Google Scholar 

  • Rahmanian E, Carmen C, Mayorga-Martinez RM, ZdenekSofer JL, Pumera M (2018) 1T-phase tungsten chalcogenides (WS2 WSe2 WTe2) decorated with TiO2 nanoplatelets with enhanced electron transfer activity for biosensing applications. ACS Appl Nano Mater 1:7006–7015

    Article  CAS  Google Scholar 

  • Rakhi RB, Nayak P, Xia C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6:36422

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Alda M, Marco M, Barcelo D (2005) Biosensors for environmental monitoring a global perspective. Talanta 65:291–297

    Article  CAS  Google Scholar 

  • Toh RJ, Carmen C, Mayorga-Martinez ZS, Pumera M (2017) 1T-phase WS2 protein-based biosensor. Adv Func Mater 27:1604923

    Google Scholar 

  • Sajedeh M, Ovchinnikov D, Diego Pasquier Oleg V, Yazyev AK (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033 (1–15)

    Google Scholar 

  • Samia MC, Gam-Derouich S, Mangeney C, Mohamed M, Chehimi C (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166

    Article  CAS  Google Scholar 

  • Sekhar PK, Brosha EL, Mukundan R, Garzon F (2010) Chemical sensors for environmental monitoring and homeland security. Electrochem Soc Inter 19:35–40

    Article  CAS  Google Scholar 

  • Selvarani K, Berchmans S (2017) Biosensing of cholesterol and glucose facilitated by cationic polymer overlayers on Ni(OH)(2)/NiOOH at physiological pH. J Electrochem Soc 164(9):561–571

    Article  CAS  Google Scholar 

  • Serna MI, Yoo SH, Moreno S, Xi Y, Oviedo JP, Choi H, Alshareef HN, Kim MJ, Minary-Jolandan M, Quevedo-Lopez MA (2016) Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control. ACS Nano 10:6054

    Article  CAS  Google Scholar 

  • Shan C, Yang H, Song J, Han D, Ivaska A (2009) Electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  • Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors. Rev Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  • Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X (2017) MoS2 nanosheet–au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 5(7):1446–1453

    Article  CAS  Google Scholar 

  • Siva Kumar K, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9:8778

    Article  Google Scholar 

  • Solanki PR, Kaushik A, Chavhan PM, Maheshwari SN, Malhotra BD (2009) Nanostructured zirconium oxide based genosensor for escherichia coli detection. Electrochem Commun 11:2272–2277

    Article  CAS  Google Scholar 

  • Solanki PR, Kaushik A, Ansari AA, Malhotra BD (2009) Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett 94:143901

    Article  CAS  Google Scholar 

  • Sticker D, Rothbauer M, Charwat V, Steinkühler J, Bethge O, Bertagnolli E, Wanzenboeck H, D, Ertl P (2015) Zirconium dioxide nanolayer passivated impedimetric sensors for cell-based assays. Sens Actuators B 213:35−44

    Google Scholar 

  • Su B, Tang J, Huang J, Yang H, Qiu B, Chen G, Tang D (2010) Graphene and nanogold-functionalized immunosensing interface with enhanced sensitivity for one-step electrochemical immunoassay of α-fetoprotein in human serum. Electroanalysis 22:2720–2728

    Article  CAS  Google Scholar 

  • Su S, Chen S, Fan C (2018) Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy Environ 3:97–106

    Google Scholar 

  • Tanja N, Chem GN (2011) Strategies for ‘“wiring”’ redox-active proteins to electrodes and applications in biosensors, bio fuel cells, and nanotechnology. Chem Soc Rev 40:3564–3576

    Article  CAS  Google Scholar 

  • Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol 50:625–641

    Article  CAS  Google Scholar 

  • Thimsen E, Riha SC, Baryshev SV, Martinson ABF, Pellin EJW (2012) Atomic layer deposition of the quaternary chalcogenide Cu2ZnSnS4. Chem Mater 24:3188

    Article  CAS  Google Scholar 

  • Valdivia A, Tweet DJ, Conley JF (2016) Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J Vacuum Sci Technol 34:02151556

    Google Scholar 

  • Velasco-G MN, Mottram T (2003) Biosensor technology: addressing agricultural problems. Biosyst Eng 84(1):1–12

    Article  Google Scholar 

  • Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015a) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  CAS  Google Scholar 

  • Wang X, Chu C, Shen L, Deng W, Yan M, Ge S, Yu J, Song X (2015b) An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens Actuators 206:30–36

    Article  CAS  Google Scholar 

  • Wang F, Yang C, Duan C, Xiao D, Tang Y, Zhu J (2015c) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc 162:B16–B21

    Article  CAS  Google Scholar 

  • Wang J (1994) Analytical electrochemistry. VCH, New York

    Google Scholar 

  • Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang H (2014) Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10:1101–1105

    Article  CAS  Google Scholar 

  • Wang L, Xiong Q, Xiao F, Duan H (2017) 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 89:136–151

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  CAS  Google Scholar 

  • Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of escherichia coli O157:H7. Biosens Bioelectron 49:492–498

    Article  CAS  Google Scholar 

  • Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  • Wei Q, Mao K, Wu D, Dai Y, Yang J, Du B, Yang M, Li H (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens Actuators 149:314–318

    Article  CAS  Google Scholar 

  • Wilson JA, Yoffe AD (1969) the Transition metal dichalcogenides discussion and interpretation of the observed optical electrical and structural properties. Adv Phys 18(73):193–335

    Article  CAS  Google Scholar 

  • Wilson JA, Yoffe AD (1979) The transition metal dichalcogenides discussion and interpretation of the observed optical electrical and structural properties. Adv Phys 18:193–335

    Article  Google Scholar 

  • Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406

    Article  CAS  Google Scholar 

  • Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28:3333–3339

    Article  CAS  Google Scholar 

  • Yadegari A, Omidi M, Yazdian F, Zali H, Tayebi L (2017) An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene−gold nanostructures. RSC Adv 7:2365–2372

    Article  CAS  Google Scholar 

  • Yang G, Cao J, Li L, Rana RK, Zhu JJ (2013) Carboxymethyl chitosan-functionalized graphene for label-free electrochemical cytosensing. Carbon 51:124–133

    Article  CAS  Google Scholar 

  • Yang G, Li L, Rana RK, Zhu JJ (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon 61:357–366

    Article  CAS  Google Scholar 

  • Yang TT, Jia HY, Liu Z, Qiu XL, Gao YS, Xu JK, Lu LM, Yu YF (2017) Label-free electrochemical immunoassay for α-fetoprotein based on a redox matrix of prussian blue-reduced graphene oxide/gold nanoparticles-poly(3, 4-ethylenedioxythiophene) composite. J Electroanal Chem 799:625–633

    Article  CAS  Google Scholar 

  • Huang Y, Miao Y-E, Zhang L, Tjiu WW, Panb J, Liu T (2014) Synthesis of few-layered MoS2 nanosheet-coated electrospun SnO2 nanotube heterostructures for enhanced hydrogen evolution reaction. Nanoscale 6:10673–10679

    Article  CAS  Google Scholar 

  • Zeng Z et al (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewande Chemie Int Edn 50:11093–11097

    Article  CAS  Google Scholar 

  • Zeng G, Xing Y, Gao J, Wang Z, Zhang X (2010) Unconventional layer-by-layer assembly of graphene multilayerfilms for enzyme-based glucose and maltose biosensing. Langmuir 26:15022–15026

    Article  CAS  Google Scholar 

  • Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J, Jiang J (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Func Mater 20:3366–3372

    Article  CAS  Google Scholar 

  • Zhang D, Zhang Y, Zheng L, Zhan Y, He L (2013) Graphene oxide/poly-L-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancer cells. Biosens Bioelectron 42:112–118

    Article  CAS  Google Scholar 

  • Zhang X, Ju H, Wang J (2008) Electrochemical sensors, biosensors and their biomedical applications. Academic Press, New York

    Google Scholar 

  • Zhao Y, Zhang YH, Zhuge Z, Tang YH, Tao JW, Chen Y (2018) Synthesis of a poly-L-lysine/black phosphorus hybrid for biosensors. Anal Chem 90:3149–3155

    Article  CAS  Google Scholar 

  • Zheng T, Tan T, Zhang Q, Fu JJ, Wu JJ, Zhang K, Zhu JJ, Wang H (2013) Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface. Nanoscale 5:10360–10368

    Article  CAS  Google Scholar 

  • Meng Z, Stolz RM, Mendecki L, Mirica KA (2019) Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 119:478–598

    Article  CAS  Google Scholar 

  • Cai Z, Liu B, Zou X, Cheng H-M (2018) Chemical vapor deposition growth and applications of two dimensional materials and their hetero structures. Chem Rev 118:6091–6133

    Article  CAS  Google Scholar 

  • Zhang P, Yang S, Pineda-Gómez R, Ibarlucea B, Ma J, Lohe MR, Akbar TF, Baraban L, Cuniberti G, Feng X (2019) Electrochemically exfoliated high-quality 2H-MoS2 for multi flake thin film flexible biosensors. Small 15:1901265

    Google Scholar 

  • Zhou L, Mao H, Wu C, Tang L, Wu Z, Sun H, Zhang H, Zhou H, Jia C, Jin Q, Chen X, Zhao J (2017) Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens Bioelectron 87:701–707

    Article  CAS  Google Scholar 

  • Zhou Y, Liu S, Jiang HJ, Yang H, Chen HY (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase-11immobilized on chitosan-graphene nanocomposite. Electroanalysis 22:1323–1328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berchmans, S., Balamurugan, T. (2021). Immobilization of Molecular Assemblies on 2D Nanomaterials for Electrochemical Biosensing Applications. In: Tripathi, A., Melo, J.S. (eds) Immobilization Strategies . Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7998-1_12

Download citation

Publish with us

Policies and ethics