Skip to main content
Log in

H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Unexpected benefits to the catalytic performance of materials often originate from the presence of surface defects. Here, novel D-penicillamine modified molybdenum oxide nanodots, with abundant oxygen vacancy defects, were fabrication by a mild, simple, and cost-effective method. Ultraviolet—visible (UV—Vis) absorption spectra analysis showed that the nanodots had peroxidase-like and catalase-like activities. The reactive oxygen species were probed by electronic paramagnetic resonance technique and spectroscopic methods, demonstrating that the nanodots also had oxidase-like activity. Interestingly, the peroxidase-like activity of nanodots was synergistically enhanced in the presence of ferrous ions or ferric ions. Remarkably, less than nanomolar levels of ferrous ions were required to display this phenomenon, meaning Fenton reagent acted as leverage. Based on this, a sensitive colorimetric and fluorescent dual-mode sensor for alendronate sodium was developed. The linear ranges for colorimetric and fluorescence analysis were 0.2–2.5 and 0.2–2.0 µM, with detection limits of 31.21 and 71.84 nM, correspondingly. The method has a simple large-scale material preparation process with higher sensitivity and shorter reaction time, which can inspire and enlighten the design of nanozyme sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

    CAS  Google Scholar 

  2. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    CAS  Google Scholar 

  3. Li, X.; Zhu, H. J.; Liu, P.; Wang, M. Z.; Pan, J. M.; Qiu, F. X.; Ni, L.; Niu, X. H. Realizing selective detection with nanozymes: Strategies and trends. TrAC Trends Analyt. Chem. 2021, 143, 116379.

    CAS  Google Scholar 

  4. Chen, L. F.; Lin, M. T.; Noreldeen, H. A. A.; Peng, H. P.; Deng, H. H.; He, S. B.; Chen, W. Fructose oxidase-like activity of CuO nanoparticles supported by phosphate for a tandem catalysis-based fructose sensor. Anal. Chim. Acta 2022, 1220, 340064.

    CAS  Google Scholar 

  5. Qiu, Z. W.; Duan, W.; Cao, S. F.; Zeng, T.; Zhao, T. Y.; Huang, J. K.; Lu, X. Q.; Zeng, J. B. Highly specific colorimetric probe for fluoride by triggering the intrinsic catalytic activity of a AgPt-Fe3O4 hybrid nanozyme encapsulated in SiO2 shells. Environ. Sci. Technol. 2022, 56, 1713–1723.

    CAS  Google Scholar 

  6. Liu, B. W.; Han, X.; Liu, J. W. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 2016, 8, 13620–13626.

    CAS  Google Scholar 

  7. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    CAS  Google Scholar 

  8. Wu, Y.; Xu, W. Q.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Gu, W. L.; Zhu, C. Z. Defect engineering in nanozymes. Mater. Today 2022, 52, 327–347.

    CAS  Google Scholar 

  9. Liang, X.; Han, L. White peroxidase-mimicking nanozymes: Colorimetric pesticide assay without interferences of O2 and color. Adv. Funct. Mater. 2020, 30, 2001933.

    CAS  Google Scholar 

  10. Zhao, X. T.; Li, S.; Yu, X. X.; Gang, R. T.; Wang, H. In situ growth of CeO2 on g-C3N4 nanosheets toward a spherical g-C3N4/CeO2 nanozyme with enhanced peroxidase-like catalysis: A selective colorimetric analysis strategy for Mercury(II). Nanoscale 2020, 12, 21440–21440.

    CAS  Google Scholar 

  11. Parmekar, M. V.; Salker, A. V. Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Appl. Nanosci. 2020, 10, 317–328.

    CAS  Google Scholar 

  12. Gharib, M.; Kornowski, A.; Noei, H.; Parak, W. J.; Chakraborty, I. Protein-protected porous bimetallic AgPt nanoparticles with PH-switchable peroxidase/catalase-mimicking activity. ACS Mater. Lett. 2019, 1, 310–319.

    CAS  Google Scholar 

  13. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    CAS  Google Scholar 

  14. Wang, S. Q.; Wang, X. F.; Du, B. Y.; Jin, Y.; Ai, W. H.; Zhang, G. D.; Zhou, T.; Wang, F.; Zhang, Z. Q. Hydrogen peroxide-assisted and histidine- stabilized copper-containing nanozyme for efficient degradation of various organic dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 287, 122084.

    CAS  Google Scholar 

  15. Pacchioni, G. Oxygen vacancy: The invisible agent on oxide surfaces. Chemphyschem 2003, 4, 1041–1047.

    CAS  Google Scholar 

  16. Scorza, E.; Birkenheuer, U.; Pisani, C. The oxygen vacancy at the surface and in bulk MgO: An embedded-cluster study. J. Chem. Phys. 1997, 107, 9645–9658.

    CAS  Google Scholar 

  17. Wang, Z. L.; Lin, R. J.; Huo, Y. N.; Li, H. X.; Wang, L. Z. Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv. Funct. Mater. 2022, 32, 2109503.

    CAS  Google Scholar 

  18. Yuan, X.; Wang, L. L.; Hu, M. M.; Zhang, L. L.; Chen, H.; Zhang, D. L.; Wang, Z. M.; Li, T.; Zhong, M. J.; Xu, L. J. et al. Oxygen vacancy-driven reversible free radical catalysis for environment-adaptive cancer chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 20943–20951.

    CAS  Google Scholar 

  19. Kim, Y. M.; He, J.; Biegalski, M. D.; Ambaye, H.; Lauter, V.; Christen, H. M.; Pantelides, S. T.; Pennycook, S. J.; Kalinin, S. V.; Borisevich, A. Y. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888–894.

    CAS  Google Scholar 

  20. Qin, Y. X.; Liu, S. C.; Shen, X.; Gui, H. Y.; Bai, Y. N. Enhanced gas sensing performance of Bi2MoO6 with introduction of oxygen vacancy: Coupling of experiments and first-principles calculations. J. Alloys Compd. 2022, 894, 162534.

    CAS  Google Scholar 

  21. Zhang, Y.; Li, D. X.; Tan, J. S.; Chang, Z. S.; Liu, X. Y.; Ma, W. S.; Xu, Y. H. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small 2021, 17, 2005739.

    CAS  Google Scholar 

  22. Liu, H. M.; Cheng, R.; Dong, X. H.; Zhu, S.; Zhou, R. Y.; Yan, L.; Zhang, C. Y.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. BiO2−x nanosheets as radiosensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorg. Chem. 2020, 59, 3482–3493.

    CAS  Google Scholar 

  23. Zhao, N.; Yang, F. E.; Zhao, C. Y.; Lv, S. W.; Wang, J.; Liu, J. M.; Wang, S. Construction of pH-dependent nanozymes with oxygen vacancies as the high-efficient reactive oxygen species scavenger for oral-administrated anti-inflammatory therapy. Adv. Healthcare Mater. 2021, 10, 2101618.

    CAS  Google Scholar 

  24. Gong, F.; Yang, N. L.; Wang, Y.; Zhuo, M. P.; Zhao, Q.; Wang, S.; Li, Y. G.; Liu, Z.; Chen, Q.; Cheng, L. Oxygen-deficient bimetallic oxide FeWOx nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 2020, 16, 2003496.

    CAS  Google Scholar 

  25. Lu, W. H.; Chen, J.; Kong, L. S.; Zhu, F.; Feng, Z. Y.; Zhan, J. H. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sens. Actuators B Chem. 2021, 333, 129560.

    CAS  Google Scholar 

  26. Zhao, Y. L.; Wang, Y. W.; Mathur, A.; Wang, Y. Q.; Maheshwari, V.; Su, H. J.; Liu, J. W. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: Inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 2019, 11, 17841–17850.

    CAS  Google Scholar 

  27. Cummings, S. R.; Santora, A. C.; Black, D. M.; Russell, R. G. G. History of alendronate. Bone 2020, 137, 115411.

    CAS  Google Scholar 

  28. Russell, R. G. G. Bisphosphonates: The first 40 years. Bone 2011, 49, 2–19.

    CAS  Google Scholar 

  29. Alhakamy, N. A.; Ahmed, O. A. A.; Fahmy, U. A.; Md, S. Apamin-conjugated alendronate sodium nanocomplex for management of pancreatic cancer. Pharmaceuticals (Basel) 2021, 14, 729.

    CAS  Google Scholar 

  30. Lu, T. L.; Hu, H. J.; Zhao, W.; Chen, T. RP-HPLC analysis of hydrophobic alendronate amidated derivatives. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 349–361.

    CAS  Google Scholar 

  31. Reddy, P. S.; Babu, K. S.; Kumar, N.; Balakrishna, P. A validated stability indicating ion exchange chromatographic method for the quantification of alendronate, phosphite and phosphate in alendronate sodium tablets and analysis of in-vitro dissolution samples. J. Chil. Chem. Soc. 2012, 57, 1232–1234.

    CAS  Google Scholar 

  32. Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3−x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395–402.

    CAS  Google Scholar 

  33. Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893–2896.

    CAS  Google Scholar 

  34. Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460.

    CAS  Google Scholar 

  35. Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. et al. Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.

    Google Scholar 

  36. Li, X. Y.; Xu, H. C.; Hu, W. X.; Zhou, H. R.; Zhu, Y. M.; Lu, L. F.; Si, C. L. One step synthesis of Mo-doped carbon microspheres for valorization corncob to levulinic acid. Ind. Crops Prod. 2022, 184, 115019.

    CAS  Google Scholar 

  37. Jung, S.; Lee, J.; Kim, U.; Park, H. Solution-processed molybdenum oxide with hydroxyl radical-induced oxygen vacancy as an efficient and stable interfacial layer for organic solar cells. Sol. RRL 2020, 4, 1900420.

    CAS  Google Scholar 

  38. Pacholik, G.; Enzlberger, L.; Benzer, A.; Rameshan, R.; Latschka, M.; Rameshan, C.; Föttinger, K. In situ XPS studies of MoS2-based CO2 hydrogenation catalysts. J. Phys. D Appl. Phys. 2021, 54, 324002.

    CAS  Google Scholar 

  39. An, K.; Alayoglu, S.; Ewers, T.; Somorjai, G. A. Colloid chemistry of nanocatalysts: A molecular view. J. Colloid Interf. Sci. 2012, 373, 1–13.

    CAS  Google Scholar 

  40. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    CAS  Google Scholar 

  41. Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

    CAS  Google Scholar 

  42. Su, L.; Qin, W. J.; Zhang, H. G.; Rahman, Z. U.; Ren, C. L.; Ma, S. D.; Chen, X. G. The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens. Bioelectron. 2015, 63, 384–391.

    CAS  Google Scholar 

  43. Ma, W. J.; Wang, N.; Fan, Y. N.; Tong, T. Z.; Han, X. J.; Du, Y. C. Non-radical-dominated catalytic degradation of bisphenol a by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate. Chem. Eng. J. 2018, 336, 721–731.

    CAS  Google Scholar 

  44. Nayak, J.; Chilivery, R.; Kumar, A. K.; Begum, G.; Rana, R. K. A bioinspired assembly to simultaneously heterogenize polyoxometalates as nanozymes and encapsulate enzymes in a microstructure endowing efficient peroxidase-mimicking activity. ACS Sustainable Chem. Eng. 2021, 9, 15819–15829.

    CAS  Google Scholar 

  45. Shen, B.; Dong, C. C.; Ji, J. H.; Xing, M. Y.; Zhang, J. L. Efficient Fe(III)/Fe(II) cycling triggered by MoO2 in fenton reaction for the degradation of dye molecules and the reduction of Cr(VI). Chin. Chem. Lett. 2019, 30, 2205–2210.

    CAS  Google Scholar 

  46. Jin, L. Y.; Dong, Y. M.; Wu, X. M.; Cao, G. X.; Wang, G. L. Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal. Chem. 2015, 87, 10429–10436.

    CAS  Google Scholar 

  47. Zhang, P.; Xia, W. Q.; Deng, P.; Min, Y. H.; Tan, J.; Wang, Y.; Fu, W. S. Fe(III)-mediated reversible catalytic activity of MoS2 nanozymes for bisphosphonate drug sensing. Colloids Surf. B Biointerf. 2021, 206, 111953.

    CAS  Google Scholar 

  48. Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal. 2002, 28, 1215–1220.

    CAS  Google Scholar 

  49. Alarfaj, N. A.; El-Razeq, S. A. A.; Al-Qahtani, F. N. Spectrophotometric determination of alendronate sodium in bulk drug and in pharmaceutical formulation. Asian J. Chem. 2011, 23, 697–700.

    CAS  Google Scholar 

  50. Al Deeb, S. K.; Hamdan, I. I.; Al Najjar, S. M. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta 2004, 64, 695–702.

    CAS  Google Scholar 

  51. Jia, C. Y.; Shang, J. C.; Wang, Y.; Bai, L. J.; Tong, C.; Chen, Y. J.; Zhang, P. Copper(II)-mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sens. Actuators B Chem. 2018, 269, 271–277.

    CAS  Google Scholar 

  52. Xia, M.; Zhao, X. E.; Sun, J.; Zheng, Z. J.; Zhu, S. Y. Graphene quantum dots combined with the oxidase-mimicking activity of Ce4+ for ratiometric fluorescent detection of Ce4+ and alendronate sodium. Sens. Actuators B Chem. 2020, 319, 128321.

    CAS  Google Scholar 

  53. Elmalla, S. F.; Mansour, F. R. A simple innovative spectrofluorometric method for the determination of alendronate in bulk and in pharmaceutical tablets. Luminescence 2019, 34, 375–381.

    CAS  Google Scholar 

  54. Heli, H.; Faramarzi, F.; Sattarahmady, N. Voltammetric investigation and amperometric detection of the bisphosphonate drug sodium alendronate using a copper nanoparticles-modified electrode. J. Solid State Electrochem. 2010, 14, 2275–2283.

    CAS  Google Scholar 

  55. Nirala, N. R.; Pandey, S.; Bansal, A.; Singh, V. K.; Mukherjee, B.; Saxena, P. S.; Srivastava, A. Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 2015, 74, 207–213.

    CAS  Google Scholar 

  56. Sels, B. F.; De Vos, D. E.; Grobet, P. J.; Jacobs, P. A. Kinetic and spectroscopic study of 1O2 generation from H2O2 catalyzed by LDH-MoO42− (LDH = layered double hydroxide). Chem.Eur. J. 2001, 7, 2547–2556.

    CAS  Google Scholar 

  57. Hu, X.; Li, F. Y.; Xia, F.; Guo, X.; Wang, N.; Liang, L. L.; Yang, B.; Fan, K. L.; Yan, X. Y.; Ling, D. S. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 2020, 142, 1636–1644.

    CAS  Google Scholar 

  58. Chen, Y.; Chen, T. M.; Wu, X. J.; Yang, G. W. Oxygen vacancy-engineered PEGylated MoO3−x nanoparticles with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 2019, 15, 1903153.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21603276), Fundamental Research Funds for the Central Universities (Nos. 19CX02060A and 22CX03024A), and the Natural Science Foundation of Shandong Province (No. ZR2022MB148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Wang.

Electronic Supplementary Material

12274_2023_5387_MOESM1_ESM.pdf

H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Jin, Y., Ai, W. et al. H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium. Nano Res. 16, 12106–12115 (2023). https://doi.org/10.1007/s12274-023-5387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5387-6

Keywords

Navigation