Skip to main content
Log in

Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an environmentally friendly and fast (~14 min) method for the synthesis of homogeneously distributed fluorescent polydopamine nanodots (PDA-NDs) using KMnO4 as the oxidant. Alkaline phosphatase (ALP) catalyzes the hydrolysis of ascorbic acid 2-phosphate to release free ascorbic acid which undergoes an in-situ redox reaction with KMnO4. Depending on the activity of ALP, more or less KMnO4 is consumed, and this affects the formation of the PDA-NDs. Based on this finding, a sensitive method was worked out to quantify the activity of ALP via real-time formation of fluorescent PDA-NDs. The fluorometric signal (best measured at excitation/emission peaks of 390/500 nm) is linear in the 1 to 50 mU·mL−1 ALP activity range, and the limit of the detection is as low as 0.94 mU·mL−1 (based on 3 σ/m). The method was successfully applied to the determination of ALP activity in spiked human serum and in MCF-7 cell lysates. It was also applied in a method to screen for inhibitors of ALP.

Schematic of a fluorometric method for the determination of alkaline phosphatase (ALP) activity. The method is based on the in-situ regulation of the formation of fluorescent polydopamine nanodots (PDA-NDs) through the competition between the KMnO4-induced polymerization of dopamine and ALP-directed ascorbic acid 2-phosphate (Asc-2P) hydrolysis. AA: Ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423

    Article  CAS  Google Scholar 

  2. Ye F, Wu C, Jin Y, Chan YH, Zhang X, Chiu DT (2011) Ratiometric temperature sensing with semiconducting polymer dots. J Am Chem Soc 133:8146–8149

    Article  CAS  Google Scholar 

  3. Yu JB, Rong Y, Kuo CT, Zhou XH, Chiu DT (2017) Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal Chem 89:42–56

    Article  CAS  Google Scholar 

  4. Wu CF, Schneider T, Zeigler M, Yu JB, Schiro PG, Burnham DR, McNeill JD, Chiu DT (2010) Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J Am Chem Soc 132:15410–15417

    Article  CAS  Google Scholar 

  5. Massey M, Wu M, Conroy EM, Algar WR (2015) Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. Curr Opin Biotechnol 34:30–40

    Article  CAS  Google Scholar 

  6. Liou SY, Ke CS, Chen JH, Luo YW, Kuo SY, Chen YH, Fang CC, Wu CY, Chiang CM, Chan YH (2016) Tuning the emission of semiconducting polymer dots from green to near-infrared by alternating donor monomers and their applications for in vivo biological imaging. ACS Macro Lett 5:154–157

    Article  CAS  Google Scholar 

  7. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  8. Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nano 4:5581

    CAS  Google Scholar 

  9. Yildirim A, Bayindir M (2014) Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal Chem 86:5508–5512

    Article  CAS  Google Scholar 

  10. Kong XJ, Wu S, Chen TT, Yu RQ, Chu X (2016) MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nano 8:15604–15610

    CAS  Google Scholar 

  11. Liu B, Han X, Liu J (2016) Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn 2+ detection. Nano 8(28):13620–13626

    CAS  Google Scholar 

  12. Ding P, Wang H, Song B, Ji X, Su Y, He Y (2017) In situ live-cell nucleus fluorescence labeling with bioinspired fluorescent probes. Anal Chem 89:7861–7868

    Article  CAS  Google Scholar 

  13. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483

    Article  CAS  Google Scholar 

  14. Couttenye MM, Haese PCD, Van Hoof VO, Lemoniatou E, Goodman W, Verpooten GA, Broe MED (1996) Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant 11:1065–1072

    Article  CAS  Google Scholar 

  15. Lorente JA, Valenzuela H, Morote J, Gelabert A (1999) Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med Mol Imaging 26:625

    Article  CAS  Google Scholar 

  16. Kokado A, Arakawa H, Maeda M (2000) New electrochemical assay of alkaline phosphatase using ascorbic acid 2-phosphate and its application to enzyme immunoassay. Anal Chim Acta 407:119–125

    Article  CAS  Google Scholar 

  17. Gao Z, Deng K, Wang XD, Miró M, Tang D (2014) High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Interfaces 6:18243–18250

    Article  CAS  Google Scholar 

  18. Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X (2016) Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem 88:9789–9795

    Article  CAS  Google Scholar 

  19. Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys Chem Chem Phys 11:9850–9860

    Article  CAS  Google Scholar 

  20. Shamsipur M, Shanehasz M, Khajeh K, Mollania N, Kazemi SH (2012) A novel quantum dot–laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 137:5553–5559

    Article  CAS  Google Scholar 

  21. Carver JC, Schweitzer GK, Carlson TA (1972) Use of X-Ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds. J Chem Phys 57:973

    Article  CAS  Google Scholar 

  22. Nicolas RG, Pelletier ML, Nair MM, Chevallier P, Jean Lagueux J, Gossuin Y, Laurent S, Kleitz F, Fortin MA (2013) Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nano 5:11499

    Google Scholar 

  23. Di Castro V, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom 48:117

    Article  Google Scholar 

  24. Jia HL, Cheng JY, Ya CY, Wei LT (2015) Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Phys Chem Chem Phys 17:15124

    Article  Google Scholar 

  25. Yu X, Fan H, Liu Y, Shi Z, Jin Z (2014) Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 30:5497–5505

    Article  CAS  Google Scholar 

  26. Ma JL, Yin BC, Wu X, Ye BC (2016) Copper-mediated DNAscaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Anal Chem 88(18):9219–9225

    Article  CAS  Google Scholar 

  27. Kang W, Ding Y, Zhou H, Liao Q, Yang X, Yang Y, Jiang JS, Yang MH, Yang MH (2015) Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta 182(5–6):1161–1167

    Article  CAS  Google Scholar 

  28. Nie F, Luo K, Zheng X, Zheng J, Song Z (2015) Novel preparation and electrochemiluminescence application of luminol functional-Au nanoclusters for ALP determination. Sensors Actuators B Chem 218:152–159

    Article  CAS  Google Scholar 

  29. Tang Z, Zhang H, Ma CB, Gu P, Zhang GH, Wu KF, Chen MJ, Wang KM (2018) Colorimetric determination of the activity of alkaline phosphatase based on the use of Cu (II)-modulated G-quadruplex-based DNAzymes. Microchim Acta 185(2):109

    Article  Google Scholar 

  30. Mao M, Tian T, He Y, Ge Y, Zhou J, Song G (2018) Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by using carbon dots codoped with boron and nitrogen. Microchim Acta 185(1):17

    Article  Google Scholar 

  31. Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM (2018) Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim Acta 185(2):102

    Article  Google Scholar 

  32. Guo L, Chen D, Yang M (2017) DNA templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchim Acta 184(7):2165–2170

    Article  CAS  Google Scholar 

  33. Liu H, Ma C, Wang J, Wang K, Wu K (2017) A turn-on fluorescent method for determination of the activity of alkaline phosphatase based on dsDNA templated copper nanoparticles and exonuclease based amplification. Microchim Acta 184(7):2483–2488

    Article  CAS  Google Scholar 

  34. Wang H, Mu L, She G, Xu H, Shi W (2014) Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. Sensors Actuators B Chem 203:774–781

    Article  CAS  Google Scholar 

  35. He Y, Jiao B (2017) Determination of the activity of alkaline phosphatase based on the use of ssDNA templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchim Acta 184(10):4167–4173

    Article  CAS  Google Scholar 

  36. Qian ZS, Chai LJ, Huang YY, Tang C, Shen J, Jia C, Feng H (2015) A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens Bioelectron 68:675–680

    Article  CAS  Google Scholar 

  37. Dong L, Miao Q, Hai Z, Yuan Y, Liang G (2015) Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells. Anal Chem 87(13):6475–6478

    Article  CAS  Google Scholar 

  38. Deng J, Yu P, Wang Y, Mao L (2015) Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem 87(5):3080–3086

    Article  CAS  Google Scholar 

  39. Dhariwal KR, Hartzell WO, Levine M (1991) Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J ClinNutr 54:712–716

    CAS  Google Scholar 

  40. Cameron E, Pauling L, Leibovitz B (1979) Ascorbic acid and cancer: a review. Cancer Res 39:663–681

    CAS  Google Scholar 

  41. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  42. Gibbons IR, Cosson MP, Evans JA, Gibbons BH, Houck B, Martinson KH, Sale WS, Tang WJ (1978) Potent inhibition of dynein adenosine triphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci 75:2220–2224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Natural Science Foundation of China (21605050) and Shanghai Natural Science Foundation (15ZR1411600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuezhong Xian.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Cao, X., Zhang, C. et al. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim Acta 185, 231 (2018). https://doi.org/10.1007/s00604-018-2769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2769-7

Keywords

Navigation