Skip to main content
Log in

Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The commercial application of non-precious metal-based electrocatalysts is not only limited by the intrinsic activity of the catalysts, but also the stability of the catalysts is extremely important. Herein, we fabricated an ultra-stable NiFe armored catalyst (Ar-NiFe/NC) by a simple secondary pyrolysis strategy. The as-obtained Ar-NiFe/NC electrocatalyst exhibits an excellent bifunctional oxygen electrocatalytic performance with an activity indicator ΔE of 0.74 V vs. reversible hydrogen electrode (RHE). More importantly, the Ar-NiFe/NC electrocatalyst also shows a remarkable operational and storage stability. After accelerated durability test (ADT) cycles, no obvious degradation of oxygen electrocatalytic performance could be observed. In addition, the Ar-NiFe/NC electrocatalyst still exhibits an unbated oxygen electrocatalytic performance comparable to fresh catalysts after three months of air-exposed storage. The assembled liquid and flexible quasi-solid-state rechargeable Zn—air batteries with the Ar-NiFe/NC electrocatalyst exhibit impressive performance. The liquid rechargeable Zn—air batteries possess a high open-circuit voltage (OCV) of 1.43 V and a salient peak power density of 146.40 mW·cm−2, while the flexible quasi-solid-state rechargeable Zn—air batteries also exhibit an excellent OCV of 1.60 V and an exciting peak power density of 41.99 mW·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagh, N. K.; Kim, D. H.; Kim, S. H.; Shinde, S. S.; Lee, J. H. Heuristic iron-cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn-air cells. ACS Nano 2021, 15, 14683–14696.

    CAS  Google Scholar 

  2. Tiwari, A. P.; Kim, D.; Kim, Y.; Lee, H. Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv. Energy Mater. 2017, 7, 1602217.

    Google Scholar 

  3. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    CAS  Google Scholar 

  4. Wang, B.; Srinivas, K.; Liu, Y. F.; Liu, D. W.; Zhang, X. J.; Zhang, W. L.; Chen, Y. F. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res 2022, 15, 3971–3979.

    CAS  Google Scholar 

  5. Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn—air batteries. Adv. Sci. 2018, 5, 1700691.

    Google Scholar 

  6. Lei, Y. P.; Wang, Q. C.; Peng, S. J.; Ramakrishna, S.; Zhang, D.; Zhou, K. C. Electrospun inorganic nanofibers for oxygen electrocatalysis: Design, fabrication, and progress. Adv. Energy Mater. 2020, 10, 1902115.

    CAS  Google Scholar 

  7. Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

    CAS  Google Scholar 

  8. Wang, C. Y.; Xie, N. H.; Zhang, Y. L.; Huang, Z. H.; Xia, K. L.; Wang, H. M.; Guo, S. J.; Xu, B. Q.; Zhang, Y. Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn-air batteries. Chem. Mater. 2019, 31, 1023–1029.

    CAS  Google Scholar 

  9. Sun, C.; Zhao, Y. J.; Yuan, X. Y.; Li, J. B.; Jin, H. B. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022, 41, 2616–2623.

    CAS  Google Scholar 

  10. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  11. Zhu, Z.; Shi, X. M.; Zhu, D. D.; Wang, L. B.; Lei, K. X.; Li, F. J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability. Research 2019, 2019, 6180615.

    CAS  Google Scholar 

  12. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    CAS  Google Scholar 

  13. Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.

    CAS  Google Scholar 

  14. Zhang, J. X.; Zhao, X.; Du, L.; Li, Y. T.; Zhang, L. H.; Liao, S. J.; Goodenough, J. B.; Cui, Z. M. Antiperovskite nitrides CuNCo3−xVx: Highly efficient and durable electrocatalysts for the oxygen-evolution reaction. Nano Lett. 2019, 19, 7457–7463.

    CAS  Google Scholar 

  15. Chen, J. J.; Gu, S.; Hao, R.; Wang, Z. Y.; Li, M. Q.; Li, Z. Q.; Liu, K.; Liao, K. M.; Wang, Z. Q.; Huang, H. et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as highperformance catalysts for Zn—air batteries. Rare Met. 2022, 41, 2055–2062.

    CAS  Google Scholar 

  16. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  17. Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

    CAS  Google Scholar 

  18. Jiao, Y.; Zheng, Y.; Jaroniecb, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    CAS  Google Scholar 

  19. Naeem, M.; Rizwan, M.; Bakhtawar, R.; Usman, Z.; Ma, X. L.; Cao, C. B. Oxynitride perovskite: Computational approach to correlate structural, electronic, and optical properties of c-BiAlO3/N3. ACS Appl. Electron. Mater. 2022, 4, 375–385.

    CAS  Google Scholar 

  20. Ullah, H. M. N.; Rizwan, M.; Ali, S. S.; Usman, Z.; Ma, X. L.; Cao, C. B. A computational study for mechanical, thermoelectric and optoelectronic applications of BiAlO3 under static pressure. J. Phys. Chem. Solids 2022, 168, 110819.

    Google Scholar 

  21. Wang, X. J.; Li, Y.; Jin, T.; Meng, J.; Jiao, L. F.; Zhu, M.; Chen, J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn—air batteries. Nano Lett. 2017, 17, 7989–7994.

    CAS  Google Scholar 

  22. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of Fe Co-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

    Google Scholar 

  23. Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

    Google Scholar 

  24. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk meta. Adv. Mater. 2019, 31, 1808043.

    Google Scholar 

  25. Zeng, S.; Chen, H. Y.; Wang, H.; Tong, X.; Chen, M. H.; Di, J. T.; Li, Q. W. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn—air batteries. Small 2017, 13, 1700518.

    Google Scholar 

  26. Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. L.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.

    Google Scholar 

  27. Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

    Google Scholar 

  28. Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

    CAS  Google Scholar 

  29. Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

    CAS  Google Scholar 

  30. Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

    Google Scholar 

  31. Younas, W.; Naveed, M.; Cao, C. B.; Zhu, Y. Q.; Du, C. L.; Ma, X. L.; Mushtaq, N.; Tahir, M.; Naeem, M. Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J. Colloid Interface Sci. 2022, 608, 1005–1014.

    CAS  Google Scholar 

  32. Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

    CAS  Google Scholar 

  33. Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 2019, 12, 727–738.

    CAS  Google Scholar 

  34. Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C. Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.

    Google Scholar 

  35. Feng, S. Q.; Liu, C.; Chai, Z. G.; Li, Q.; Xu, D. S. Cobalt-based hydroxide nanoparticles@N-doping carbonic frameworks core—shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res. 2018, 11, 1482–1489.

    CAS  Google Scholar 

  36. Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.

    Google Scholar 

  37. Li, B. Q.; Zhao, C. X.; Chen, S. M.; Liu, J. N.; Chen, X.; Song, L.; Zhang, Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn—air batteries. Adv. Mater. 2019, 31, 1900592.

    Google Scholar 

  38. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal—organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    CAS  Google Scholar 

  39. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    CAS  Google Scholar 

  40. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  41. Yang, L.; Zeng, X. F.; Wang, D.; Cao, D. P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277–283.

    Google Scholar 

  42. Zhong, L. X.; Jiang, C. Y.; Zheng, M. T.; Peng, X. W.; Liu, T. C.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Gu, L.; Zhang, S. Q. et al. Wood carbon based single-atom catalyst for rechargeable Zn-air batteries. ACS Energy Lett. 2021, 6, 3624–3633.

    CAS  Google Scholar 

  43. Zhang, N. N.; Xie, S. L.; Wang, W. L.; Xie, D.; Zhu, D. L.; Cheng, F. L. Ultra-small Fe2N/N-CNTs as efficient bifunctional catalysts for rechargeable Zn-air batteries. J. Electrochem. Soc. 2020, 167, 020505.

    CAS  Google Scholar 

  44. Wang, C.; Li, Z. F.; Wang, L. K.; Niu, X. L.; Wang, S. W. Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn—air batteries. ACS Sustainable Chem. Eng. 2019, 7, 13873–13885.

    CAS  Google Scholar 

  45. Du, C.; Gao, Y. G.; Wang, J. G.; Chen, W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 9981–9990.

    CAS  Google Scholar 

  46. Ren, J. T.; Chen, L.; Wang, Y. S.; Tian, W. W.; Gao, L. J.; Yuan, Z. Y. FeNi nanoalloys encapsulated in N-doped CNTs tangled with N-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn-air batteries. ACS Sustainable Chem. Eng. 2020, 8, 223–237.

    CAS  Google Scholar 

  47. Ma, Y. F.; Chen, W. H.; Jiang, Z. Q.; Tian, X. N.; Wangguo, X. Y.; Chen, G. L.; Jiang, Z. J. NiFe nanoparticles supported on N-doped graphene hollow spheres entangled with self-grown N-doped carbon nanotubes for liquid electrolyte/flexible all-solid-state rechargeable zinc-air batteries. J. Mater. Chem. A 2022, 10, 12616–12631.

    CAS  Google Scholar 

  48. Qiao, X. C.; Jin, J. T.; Luo, J. M.; Fan, H. B.; Cui, L. F.; Wang, W. L.; Liu, D.; Liao, S. J. In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloys Compd 2020, 828, 154238.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22102132), the Funds for Basic Scientific Research in Central Universities and the Youth Project of the Natural Science Foundation of Shaanxi Province, China (No. 2021JQ-087), Ningbo Natural Science Foundation (No. 2021J053), and the open research fund of Key Laboratory for Organic Electronics and Information Displays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Yang or Yunhu Han.

Electronic Supplementary Material

12274_2022_5197_MOESM1_ESM.pdf

Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries

Supplementary material, approximately 1.66 MB.

Supplementary material, approximately 1.24 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhao, M., Ma, C. et al. Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries. Nano Res. 16, 4980–4986 (2023). https://doi.org/10.1007/s12274-022-5197-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5197-2

Keywords

Navigation