Skip to main content
Log in

Water boosted CO2/C2H2 separation in L-arginine functionalized metal—organic framework

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The separation of CO2/C2H2 mixture by CO2-selective sorbents is an energy-efficient C2H2 purification technique, but is strategically challenging due to their similar molecular size and physicochemical properties. Meanwhile, water is inevitable in CO2/C2H2 mixture and it is usually a significant barrier because of its competitive adsorption with CO2. To address this challenge, herein, we report the first example of metal—organic framework (MOF) that exhibits water-boosted CO2 adsorption and CO2/C2H2 separation by anchoring L-arginine (ARG) on the Zr6 cluster of MOF-808. The CO2 affinity and capacity in the resulting MOF-808-ARG are markedly facilitated by the presence of water, while the C2H2 adsorption is significantly suppressed. Specifically, CO2 adsorption capacities in adsorption isotherm and breakthrough measurement are increased to 143% and 184%, respectively. In addition, the wet MOF-808-ARG exhibits the record CO2/C2H2 selectivity of 1,180 under zero coverage. Breakthrough experiments reveal that CO2/C2H2 mixture can be completely separated and the result of mass spectrometry indicates that the C2H2 purity in the outlet is up to 99.9%. In situ infrared (IR) results and density functional theory (DFT) calculations reveal the water-promoted CO2 adsorption mechanism that the formation of bicarbonate products in the presence of water is thermodynamically and kinetically more favorable than that without water. Moreover, MOF-808-ARG also possesses excellent water stability and excellent regeneration of CO2 adsorption. This work provides a new paradigm by transforming the negative effects of water into positive ones for CO2/C2H2 separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760.

    Article  CAS  Google Scholar 

  2. Stang, P. J.; Diederich, F. Modern Acetylene Chemistry; John Wiley & Sons: New York, 1995.

    Book  Google Scholar 

  3. Granada, A.; Karra, S. B.; Senkan, S. M. Conversion of methane into acetylene and ethylene by the chlorine-catalyzed oxidative-pyrolysis (CCOP) process. 1. Oxidative pyrolysis of chloromethane. Ind. Eng. Chem. Res. 1987, 26, 1901–1905.

    Article  CAS  Google Scholar 

  4. Eguchi, R.; Uchida, S.; Mizuno, N. Inverse and high CO2/C2H2 sorption selectivity in flexible organicinorganic ionic crystals. Angew. Chem., Int. Ed. 2012, 51, 1635–1639.

    Article  CAS  Google Scholar 

  5. Foo, M. L.; Matsuda, R.; Hijikata, Y.; Krishna, R.; Sato, H.; Horike, S.; Hori, A.; Duan, J. G.; Sato, Y.; Kubota, Y. et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 2016, 138, 3022–3030.

    Article  CAS  Google Scholar 

  6. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

    Article  Google Scholar 

  7. Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C.; et al. Ma, S.Q. Metal-organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.

    Article  CAS  Google Scholar 

  8. Lewis, J. D. Separation of acetylene from ethylene-bearing gases. U. S. Patent. 38, 371, 44, September 24, 1974.

  9. Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, L. L.; Chen, B. L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy. Environ. Sci. 2016, 9, 3612–3641.

    Article  CAS  Google Scholar 

  10. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  11. Gao, J. K.; Qian, X. F.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B. L. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2020, 59, 4396–4400.

    Article  CAS  Google Scholar 

  12. Wang, Y.; Jia, X. X.; Yang, H. J.; Wang, Y. X.; Chen, X. T.; Hong, A. N.; Li, J. P.; Bu, X. H.; Feng, P. Y. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2. Angew. Chem., Int. Ed. 2020, 59, 19027–19030.

    Article  CAS  Google Scholar 

  13. Gong, L. S.; Liu, Y.; Ren, J. Y.; Al-Enizi, A. M.; Nafady, A.; Ye, Y. X.; Bao, Z. B.; Ma, S. Q. Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano. Res. 2022, 15, 7559–7564.

    Article  CAS  Google Scholar 

  14. Vismara, R.; Di Nicola, C.; Millán, R. G. S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Res. 2021, 14, 532–540.

    Article  CAS  Google Scholar 

  15. Yu, J. M.; Xie, L. H.; Li, J. R.; Ma, Y. G.; Seminario, J. M.; Balbuena, P. B. CO2 capture and separations using MOFs: Computational and experimental studies. Chem. Rev. 2017, 117, 9674–9754.

    Article  CAS  Google Scholar 

  16. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

    Article  CAS  Google Scholar 

  17. Liu, J. J.; Wang, Z. F.; Cheng, P.; Zaworotko, M. J.; Chen, Y.; Zhang, Z. J. Post-synthetic modifications of metal-organic cages. Nat. Rev. Chem. 2022, 6, 339–356.

    Article  Google Scholar 

  18. Chang, G. G.; Li, B.; Wang, H. L.; Hu, T. L.; Bao, Z. B.; Chen, B. L. Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature. Chem. Commun. 2016, 52, 3494–3496.

    Article  CAS  Google Scholar 

  19. Fu, X. P.; Wang, Y. L.; Liu, Q. Y. Metal-organic frameworks for C2H2/CO2 separation. Dalton Trans. 2020, 49, 16598–16607.

    Article  CAS  Google Scholar 

  20. Duan, J. G.; Jin, W. Q.; Krishna, R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg. Chem. 2015, 54, 4279–4284.

    Article  CAS  Google Scholar 

  21. Zeng, H.; Xie, M.; Huang, Y. L.; Zhao, Y. F.; Zhao, X. J.; Xie, X. J.; Bai, J. P.; Wan, M. Y.; Krishna, R.; Lu, W. G. et al. Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites. Angew. Chem., Int. Ed. 2019, 58, 8515–8519.

    Article  CAS  Google Scholar 

  22. Wang, J.; Zhang, Y.; Su, Y.; Liu, X.; Zhang, P. X.; Lin, R. B.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Deng, S. G. et al. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nat. Commun. 2022, 13, 200.

    Article  Google Scholar 

  23. Mukherjee, S.; He, Y. H.; Franz, D.; Wang, S. Q.; Xian, W. R.; Bezrukov, A. A.; Space, B.; Xu, Z. T.; He, J.; Zaworotko, M. J. Halogen-C2H2 binding in ultramicroporous metal-organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chem. —Eur. J. 2020, 26, 4923–4929.

    Article  CAS  Google Scholar 

  24. Lin, R. B.; Li, L. B.; Wu, H.; Arman, H.; Li, B.; Lin, R. G.; Zhou, W.; Chen, B. L. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 2017, 139, 8022–8028.

    Article  CAS  Google Scholar 

  25. Jiang, M. D.; Cui, X. L.; Yang, L. F.; Yang, Q. W.; Zhang, Z. G.; Yang, Y. W.; Xing, H. B. A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chem. Eng. J. 2018, 352, 803–810.

    Article  CAS  Google Scholar 

  26. Yu, F.; Hu, B. Q.; Wang, X. N.; Zhao, Y. M.; Li, J. L.; Li, B.; Zhou, H. C. Enhancing the separation efficiency of a C2H2/C2H4 mixture by a chromium metal-organic framework fabricated via post-synthetic metalation. J. Mater. Chem. A 2020, 5, 2083–2089.

    Article  Google Scholar 

  27. Cao, J. W.; Mukherjee, S.; Pham, T.; Wang, Y.; Wang, T.; Zhang, T.; Jiang, X.; Tang, H. J.; Forrest, K. A.; Space, B. et al. One-step ethylene production from a four-component gas mixture by a single physisorbent. Nat Commun. 2021, 12, 6507.

    Article  CAS  Google Scholar 

  28. Xie, Y.; Cui, H.; Wu, H.; Lin, R. B.; Zhou, W.; Chen, B. L. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angew. Chem., Int. Ed. 2021, 60, 9604–9609.

    Article  CAS  Google Scholar 

  29. Hao, C. L.; Ren, H.; Zhu, H. Y.; Chi, Y. H.; Zhao, W.; Liu, X. P.; Guo, W. Y. CO2-favored metal-organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep. Purif. Technol. 2022, 290, 120804.

    Article  CAS  Google Scholar 

  30. Jin, M. M.; Li, Y. X.; Gu, C.; Liu, X. Q.; Sun, L. B. Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases. AIChE J. 2020, 66, e16645.

    Article  CAS  Google Scholar 

  31. Chen, X.; Chen, D. E.; Gan, L. H. Molecular dynamics simulation of the partial oxidation of methane to produce acetylene. Chem. Phys. Lett. 2021, 771, 138559.

    Article  CAS  Google Scholar 

  32. Zhang, Q.; Wang, J. F.; Wang, T. F. Effect of ethane and propane addition on acetylene production in the partial oxidation process of methane. Ind. Eng. Chem. Res. 2017, 56, 5174–5184.

    Article  CAS  Google Scholar 

  33. Xian, S. K.; Peng, J. J.; Zhang, Z. J.; Xia, Q. B.; Wang, H. H.; Li, Z. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem. Eng. J. 2015, 270, 385–392.

    Article  CAS  Google Scholar 

  34. Hossain, M. I.; Cunningham, J. D.; Becker, T. M.; Grabicka, B. E.; Walton, K. S.; Rabideau, B. D.; Glover, T. G. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chem. Eng. Sci. 2019, 203, 346–357.

    Article  CAS  Google Scholar 

  35. Yazaydin, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 2009, 21, 1425–1430.

    Article  CAS  Google Scholar 

  36. Huang, H. L.; Zhang, W. J.; Liu, D. H.; Zhong, C. L. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal-organic frameworks: A molecular simulation study. Ind. Eng. Chem. Res. 2012, 51, 10031–10038.

    Article  CAS  Google Scholar 

  37. Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

    Article  CAS  Google Scholar 

  38. Peng, Y. G.; Huang, H. L.; Zhang, Y. X.; Kang, C. F.; Chen, S. M.; Song, L.; Liu, D. H.; Zhong, C. L. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 2018, 9, 187.

    Article  Google Scholar 

  39. Chen, X. Y.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Modified-MOF-808-Loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl. Mater. Interfaces 2020, 12, 39227–39235.

    Article  CAS  Google Scholar 

  40. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secoondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650.

    Article  CAS  Google Scholar 

  41. Nguyen, H. L. Metal-organic frameworks can photocatalytically split water-why not? Adv. Mater. 2022, 34, 2200465.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 22038010, 22141001, and 21978212) and the Science and Technology Plans of Tianjin (Nos. 21ZYJDJC00040 and 20ZYJDJC00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Huang or Chongli Zhong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Xue, W., Huang, H. et al. Water boosted CO2/C2H2 separation in L-arginine functionalized metal—organic framework. Nano Res. 16, 6113–6119 (2023). https://doi.org/10.1007/s12274-022-5028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5028-5

Keywords

Navigation