Skip to main content
Log in

Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable ammonium-ion (NH4+) batteries (AAIBs) with ammonium ions as charge carriers possess many advantages, yet the relatively low discharge capacities (e.g., < 200 mAh·g−1) of the reported NH4+ host materials hinder the development of AAIBs. Herein, we study the NH4+ storage properties of an electrochemically activated NiCo double hydroxide (A-NiCo-DH) in neutral ammonium acetate electrolyte for the first time. The activation process extracts the interlayer anions (NO3) from the host material, providing additional cation accommodation sites for charge storage. The introduced H vacancies in A-NiCo-DH could activate the O sites, leading to the enhanced cation adsorption capability for the electrode. Therefore, A-NiCo-DH exhibits a high discharge capacity of 280.6 mAh·g−1 at 0.72 A·g−1 with good rate capability. Spectroscopy studies suggest A-NiCo-DH experiences a NH4+/H+ coinsertion mechanism. A NH4+-Zn hybrid cell is assembled using A-NiCo-DH as the cathode and Zn foil as the anode, respectively. The device delivers an energy density of 306 Wh·kg−1 at the power density of 745.8 W·kg−1 (based on the active mass of A-NiCo-DH). This work provides a new NH4+ storage material and would push forward the development of aqueous NH4+-based batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruan, P. C.; Liang, S. Q.; Lu, B. A.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.

    Article  CAS  Google Scholar 

  2. Yan, L.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Wang, Z.; Wang, Y. G. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 2020, 5, 685–691.

    Article  CAS  Google Scholar 

  3. Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

    Article  CAS  Google Scholar 

  4. Li, X.; Chen, Z. J.; Yang, Y. Q.; Liang, S. Q.; Lu, B. G.; Zhou, J. The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 2022, 9, 3986–3998.

    Article  CAS  Google Scholar 

  5. Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Zhang, H. S.; Xia, H. Synergistic interface-assisted electrode-electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 27, 2005344.

    Article  Google Scholar 

  6. Liu, Z. X.; Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2021, 2, 2100119.

    Article  CAS  Google Scholar 

  7. Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid Interface. Adv. Energy Mater. 2021, 24, 2003599.

    Article  Google Scholar 

  8. Liu, Z. X.; Qin, L. P.; Lu, B. G.; Wu, X. W.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem 2022, 15, e202200348.

    Article  CAS  Google Scholar 

  9. Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and Bi-layered V2O5. Chem 2019, 5, 1537–1551.

    Article  CAS  Google Scholar 

  10. Zhang, X. K.; Xia, M. T.; Yu, H. X.; Zhang, J. W.; Yang, Z. W.; Zhang, L. Y.; Shu, J. Hydrogen bond-assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 2021, 13, 139.

    Article  CAS  Google Scholar 

  11. Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Initiating hexagonal MoO3 for superb-stable and Fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

    Article  CAS  Google Scholar 

  12. Zhang, X. K.; Xia, M. T.; Liu, T. T.; Peng, N.; Yu, H. X.; Zheng, R. T.; Zhang, L. Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767.

    Article  CAS  Google Scholar 

  13. Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

    Article  CAS  Google Scholar 

  14. Zhang, Y. Z.; Liang, J. L.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.

    Article  CAS  Google Scholar 

  15. Ma, Y.; Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Ma, T.; Wang, Q. R.; Du, H. H.; Tao, Z. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 2022, 15, 2047–2051.

    Article  CAS  Google Scholar 

  16. Tian, Z. N.; Kale, V. S.; Wang, Y. Z.; Kandambeth, S.; Czaban-Jóźwiak, J.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. High-capacity NH4+ charge storage in covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19178–19186.

    Article  CAS  Google Scholar 

  17. Pan, Q.; Dong, R.; Lv, H. Z.; Sun, X. Q.; Song, Y.; Liu, X. X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 419, 129491.

    Article  CAS  Google Scholar 

  18. Li, Z. H.; Duan, H. H.; Shao, M. F.; Li, J. B.; O’Hare, D.; Wei, M.; Wang, Z. L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chem 2018, 4, 2168–2179.

    Article  CAS  Google Scholar 

  19. Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 2018, 30, 1803181.

    Article  Google Scholar 

  20. Zhang, F.; Liu, T. Y.; Li, M. Y.; Yu, M. H.; Luo, Y. X.; Tong, Y.; Li, Y. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 2017, 17, 3097–3104.

    Article  CAS  Google Scholar 

  21. Han, J.; Zarrabeitia, M.; Mariani, A.; Kuenzel, M.; Mullaliu, A.; Varzi, A.; Passerini, S. Concentrated electrolytes enabling stable aqueous ammonium-ion batteries. Adv. Mater. 2022, 34, 2201877.

    Article  CAS  Google Scholar 

  22. Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

    Article  Google Scholar 

  23. Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.

    Article  CAS  Google Scholar 

  24. Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.

    Article  CAS  Google Scholar 

  25. Xu, W. W.; Zhang, L.; Zhao, K. N.; Sun, X. X.; Wu, Q. L. Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode. Electrochimi. Acta 2020, 360, 137008.

    Article  CAS  Google Scholar 

  26. Xia, M. T.; Zhang, X. K.; Yu, H. X.; Yang, Z. W.; Chen, S.; Zhang, L. Y.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759.

    Article  CAS  Google Scholar 

  27. Li, H.; Yang, J.; Cheng, J. L.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020, 68, 104369.

    Article  CAS  Google Scholar 

  28. Wu, X. Y.; Xu, Y. K.; Jiang, H.; Wei, Z. X.; Hong, J. J.; Hernandez, A. S.; Du, F.; Ji, X. L. NH4+ topotactic insertion in berlin green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3077–3083.

    Article  CAS  Google Scholar 

  29. Wang, P.; Zhang, Y. F.; Feng, Z. Y.; Liu, Y. Y.; Meng, C. G. A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. J. Colloid Interface Sci. 2022, 606, 1322–1332.

    Article  CAS  Google Scholar 

  30. Yan, H.; Mu, X. J.; Song, Y.; Qin, Z. M.; Guo, D.; Sun, X. Q.; Liu, X. X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696.

    Article  CAS  Google Scholar 

  31. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

    Article  CAS  Google Scholar 

  32. Wu, Z. Y.; Lu, C. J.; Ye, F.; Zhang, L.; Jiang, L.; Liu, Q.; Dong, H. L.; Sun, Z. M.; Hu, L. F. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2106816.

    Article  CAS  Google Scholar 

  33. Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. G.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem., Int. Ed. 2019, 58, 7823–7828.

    Article  CAS  Google Scholar 

  34. Jayachandran, M.; Rose, A.; Maiyalagan, T.; Poongodi, N.; Vijayakumar, T. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 2021, 366, 137412.

    Article  CAS  Google Scholar 

  35. Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1. 5 V:The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 21, 1400930.

    Article  Google Scholar 

  36. Meng, J. M.; Song, Y.; Qin, Z. M.; Wang, Z. H.; Mu, X. J.; Wang, J.; Liu, X. X. Cobalt-nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2204026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. S. acknowledges the financial support from the National Natural Science Foundation of China (No. 51804066) and the Fundamental Research Funds for the Central Universities (No. N2205003). X. X. L. acknowledges the support by the 111 Project (B16009) and the financial support from LiaoNing Science and Technology Development Foundation Guided by Central Government (No. 2021JH6/10500139). The authors thank the Analytical and Testing Center of Northeastern University for TEM data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Song or Xiao-Xia Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Hei, P., Song, Y. et al. Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery. Nano Res. 16, 2495–2501 (2023). https://doi.org/10.1007/s12274-022-5021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5021-z

Keywords

Navigation