Skip to main content
Log in

Black-phosphorus-based junctions and their optoelectronic device applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Black phosphorus (BP) has attracted significant attention owing to its unique structure and preeminent photoelectric properties, which can be utilized to create novel junctions. Based on different BP-based junctions, versatile optoelectronic devices have been fabricated and investigated in recent years, providing a fertile library for the characteristics of BP-based junctions and their optoelectronic applications. This review summarizes diverse BP-based junctions and their optoelectronic device applications. We firstly introduce the structure and properties of BP. Then, we emphatically describe the formation, properties, and optoelectronic device applications of the BP-based junctions including heterojunctions of BP and other two-dimensional (2D) semiconductors, BP p—n homojunctions, and BP/metal Schottky junctions. Finally, the challenge and prospect of the development and application of BP-based junctions are discussed. This timely review gives a snapshot of recent research breakthroughs in BP-based junctions and optoelectronic devices based on them, which is expected to provide a comprehensive vision for the potential of BP in the optoelectronic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ricciardulli, A. G.; Blom, P. W. M. Solution-Processable 2D materials applied in light-emitting diodes and solar cells. Adv. Mater. Technol. 2020, 5, 1900972.

    Article  CAS  Google Scholar 

  2. Baboukani, A. R.; Khakpour, I.; Drozd, V.; Wang, C. L. Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Struct. 2021, 2, 2000148.

    Article  Google Scholar 

  3. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  CAS  Google Scholar 

  4. Huang, L.; Ang, K. W. Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 2020, 7, 031302.

    Article  CAS  Google Scholar 

  5. Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291.

    Article  CAS  Google Scholar 

  6. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

    Article  CAS  Google Scholar 

  7. Huang, H.; Jiang, B.; Zou, X. M.; Zhao, X. Z.; Liao, L. Black phosphorus electronics. Sci. Bull. 2019, 64, 1067–1079.

    Article  CAS  Google Scholar 

  8. Deng, B. C.; Frisenda, R.; Li, C.; Chen, X. L.; Castellanos-Gomez, A.; Xia, F. N. Progress on black phosphorus photonics. Adv. Opt. Mater. 2018, 6, 1800365.

    Article  Google Scholar 

  9. Tan, W. C.; Wang, L.; Feng, X. W.; Chen, L.; Huang, L.; Huang, X.; Ang, K. W. Recent advances in black phosphorus-based electronic devices. Adv. Electron. Mater. 2019, 5, 1800666.

    Article  Google Scholar 

  10. Chen, P. F.; Li, N.; Chen, X. Z.; Ong, W. J.; Zhao, X. J. The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Mater. 2017, 5, 014002.

    Article  Google Scholar 

  11. Chen, T. W.; Zhao, P.; Guo, X.; Zhang, S. L. Two-fold anisotropy governs morphological evolution and stress generation in sodiated black phosphorus for Sodium ion batteries. Nano Lett. 2017, 17, 2299–2306.

    Article  CAS  Google Scholar 

  12. Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903–4908.

    Article  CAS  Google Scholar 

  13. Meng, R. J.; Huang, J. M.; Feng, Y. T.; Zu, L. H.; Peng, C. X.; Zheng, L. R.; Zheng, L.; Chen, Z. B.; Liu, G. L.; Chen, B. J. et al. Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 2018, 8, 1801514.

    Article  Google Scholar 

  14. Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

    Article  CAS  Google Scholar 

  15. Zhang, Y. P.; Wang, L. L.; Xu, H.; Cao, J. M.; Chen, D.; Han, W. 3D Chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 2020, 30, 1909372.

    Article  CAS  Google Scholar 

  16. Bat-Erdene, M.; Batmunkh, M.; Tawfik, S. A.; Fronzi, M.; Ford, M. J.; Shearer, C. J.; Yu, L. P.; Dadkhah, M.; Gascooke, J. R.; Gibson, C. T. et al. Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv. Funct. Mater. 2017, 27, 1704488.

    Article  Google Scholar 

  17. Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Black phosphorus: Synthesis and application for solar cells. Adv. Energy Mater. 2018, 8, 1701832.

    Article  Google Scholar 

  18. Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123.

    Article  CAS  Google Scholar 

  19. Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

    Article  CAS  Google Scholar 

  20. Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135–155.

    Article  CAS  Google Scholar 

  21. Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

    Article  Google Scholar 

  22. Qu, G. B.; Xia, T.; Zhou, W. H.; Zhang, X.; Zhang, H. Y.; Hu, L. G.; Shi, J. B.; Yu, X. F.; Jiang, G. B. Property-activity relationship of black phosphorus at the Nano-bio interface: From molecules to organisms. Chem. Rev. 2020, 120, 2288–2346.

    Article  CAS  Google Scholar 

  23. Pang, J. B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z. F.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093.

    Article  Google Scholar 

  24. Zhang, Z. M.; Xin, X.; Yan, Q. F.; Li, Q.; Yang, Y.; Ren, T. L. Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method. Sci. China Mater. 2016, 59, 122–134.

    Article  CAS  Google Scholar 

  25. Wu, S. X.; Hui, K. S.; Hui, K. N. 2D black phosphorus: From preparation to applications for electrochemical energy storage. Adv. Sci. (Weinh.) 2018, 5, 1700491.

    Google Scholar 

  26. Ju, W. W.; Li, T. W.; Wang, H.; Yong, Y. L.; Sun, J. F. Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles. Chem. Phys. Lett. 2015, 622, 109–114.

    Article  CAS  Google Scholar 

  27. Jiang, J. W.; Park, H. S. Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 2014, 5, 4727.

    Article  CAS  Google Scholar 

  28. Luo, X.; Lu, X.; Koon, G. K. W.; Castro Neto, A. H.; Özyilmaz, B.; Xiong, Q. H.; Quek, S. Y. Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 2015, 15, 3931–3938.

    Article  CAS  Google Scholar 

  29. Island, J. O.; Castellanos-Gomez, A. Black phosphorus-based nanodevices. Semicond. Semimetals 2016, 95, 279–303.

    Article  CAS  Google Scholar 

  30. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  CAS  Google Scholar 

  31. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  32. Zhu, W. N.; Liang, L. B.; Roberts, R. H.; Lin, J. F.; Akinwande, D. Anisotropic electron-phonon interactions in angle-resolved Raman study of strained black phosphorus. ACS Nano. 2018, 12, 12512–12522.

    Article  CAS  Google Scholar 

  33. Kumar, P.; Bhadoria, B. S.; Kumar, S.; Bhowmick, S.; Chauhan, Y. S.; Agarwal, A. Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene. Phys. Rev. B 2016, 93, 195428.

    Article  Google Scholar 

  34. Mu, X.; Wang, J.; Sun, M. Two-dimensional black phosphorus: Physical properties and applications. Mater. Today Phys. 2019, 8, 92–111.

    Article  Google Scholar 

  35. Debnath, P. C.; Park, K.; Song, Y. W. Recent advances in black-phosphorus-based photonics and optoelectronics devices. Small Methods 2018, 2, 1700315.

    Article  Google Scholar 

  36. Kang, J.; Sangwan, V. K.; Wood, J. D.; Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 2017, 50, 943–951.

    Article  CAS  Google Scholar 

  37. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

    Article  CAS  Google Scholar 

  38. Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 1953, 92, 580–584.

    Article  CAS  Google Scholar 

  39. Baba, M.; Izumida, F.; Takeda, Y.; Shibata, K.; Morita, A.; Koike, Y.; Fukase, T. Two-dimensional Anderson localization in black phosphorus crystals prepared by bismuth-flux method. J. Phys. Soc. Jpn. 1991, 60, 3777–3783.

    Article  CAS  Google Scholar 

  40. Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

    Article  CAS  Google Scholar 

  41. Wang, C.; Huang, Y.; Duan, X. F. Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping. In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, 2017, pp 453–455.

  42. Han, F. W.; Zhao, C. X.; Zhang, Y. M. Photoelectric properties of monolayer black phosphorus in visible regime at room temperature. AIP Adv. 2019, 9, 055216.

    Article  Google Scholar 

  43. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  CAS  Google Scholar 

  44. Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

    Article  CAS  Google Scholar 

  45. Dai, J.; Zeng, X. Structure and stability of two dimensional phosphorene with = O or = NH functionalization. RSC Adv. 2014, 4, 48017–48021.

    Article  CAS  Google Scholar 

  46. Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437–11441.

    Article  CAS  Google Scholar 

  47. Luo, X.; Rahbarihagh, Y.; Hwang, J. C. M.; Liu, H.; Du, Y. C.; Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron. Device. Lett. 2014, 35, 1314–1316.

    Article  Google Scholar 

  48. Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 2015, 26, 435702.

    Article  Google Scholar 

  49. Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J. S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano. 2016, 10, 9543–9549.

    Article  CAS  Google Scholar 

  50. Na, J.; Park, K.; Kim, J. T.; Choi, W. K.; Song, Y. W. Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology 2017, 28, 085201.

    Article  Google Scholar 

  51. Wu, D. Z.; Peng, Z. J.; Jin, C. H.; Zhang, Z. Y. Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film. Sci. Bull. 2019, 64, 570–574.

    Article  CAS  Google Scholar 

  52. Son, Y.; Kozawa, D.; Liu, A. T.; Koman, V. B.; Wang, Q. H.; Strano, M. S. A study of bilayer phosphorene stability under MoS2-passivation. 2D Mater. 2017, 4, 025091.

    Article  Google Scholar 

  53. Gamage, S.; Fali, A.; Aghamiri, N.; Yang, L.; Ye, P. D.; Abate, Y. Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology 2017, 28, 265201.

    Article  CAS  Google Scholar 

  54. Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145.

    Article  CAS  Google Scholar 

  55. Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003–5007.

    Article  CAS  Google Scholar 

  56. Wu, L. D.; Meng, Q. Y.; Xu, Z. Y.; Cao, Q.; Xiao, Y. S.; Liu, H.; Han, G.; Wei, S. H. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol a determination. Anal. Chim. Acta 2020, 1095, 197–203.

    Article  CAS  Google Scholar 

  57. He, D. W.; Wang, Y. L.; Huang, Y.; Shi, Y.; Wang, X. R.; Duan, X. F. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 2019, 19, 331–337.

    Article  CAS  Google Scholar 

  58. Tofan, D.; Sakazaki, Y.; Walz Mitra, K. L.; Peng, R. M.; Lee, S.; Li, M.; Velian, A. Surface modification of black phosphorus with group 13 lewis acids for ambient protection and electronic tuning. Angew. Chem., Int. Ed. 2021, 60, 8329–8336.

    Article  CAS  Google Scholar 

  59. Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C. Covalent Functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

    Article  CAS  Google Scholar 

  60. An, C. J.; Kang, Y. H.; Lee, C.; Cho, S. Y. Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv. Funct. Mater. 2018, 28, 1800532.

    Article  Google Scholar 

  61. Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.

    Article  Google Scholar 

  62. Caporali, M.; Serrano-Ruiz, M.; Telesio, F.; Heun, S.; Nicotra, G.; Spinella, C.; Peruzzini, M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 2017, 53, 10946–10949.

    Article  CAS  Google Scholar 

  63. Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

    Article  CAS  Google Scholar 

  64. Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer selenium-doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 2017, 5, 6129–6135.

    Article  CAS  Google Scholar 

  65. Lv, W. M.; Yang, B. C.; Wang, B. C.; Wan, W. H.; Ge, Y. F.; Yang, R. L.; Hao, C. X.; Xiang, J. Y.; Zhang, B. S.; Zeng, Z. M. et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces 2018, 10, 9663–9668.

    Article  CAS  Google Scholar 

  66. Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

    Article  CAS  Google Scholar 

  67. Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic Limit. Sci. Adv. 2019, 5, eaau3194.

    Article  Google Scholar 

  68. Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.

    Article  Google Scholar 

  69. Thurakkal, S.; Zhang, X. Y. Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv. Sci 2020, 7, 1902359.

    Article  CAS  Google Scholar 

  70. Li, L. Y.; Wang, F. F.; Liu, Y.; Cao, F. L.; Zhu, B. H.; Gu, Y. Z. Local-field-dependent nonlinear optical absorption of black phosphorus nanoflakes hybridized by silver nanoparticles. J. Phys. Chem. C 2021, 125, 15448–15457.

    Article  CAS  Google Scholar 

  71. Lei, S. Y.; Shen, H. Y.; Sun, Y. Y.; Wan, N.; Yu, H.; Zhang, S. B. Enhancing the ambient stability of few-layer black phosphorus by surface modification. RSC. Adv. 2018, 8, 14676–14683.

    Article  CAS  Google Scholar 

  72. Zheng, Z.; Zu, X. T.; Zhang, Y.; Zhou, W. L. Rational design of Type-II Nano-heterojunctions for nanoscale optoelectronics. Mater. Today Phys. 2020, 15, 100262.

    Article  Google Scholar 

  73. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  CAS  Google Scholar 

  74. Lee, G.; Pearton, S. J.; Ren, F.; Kim, J. Two-dimensionally layered p-black phosphorus/n-MoS2/p-black phosphorus heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 10347–10352.

    Article  CAS  Google Scholar 

  75. Meingast, L.; Koleśnik-Gray, M.; Siebert, M.; Abellán, G.; Wild, S.; Lloret, V.; Mundloch, U.; Hauke, F.; Hirsch, A.; Krstić, V. Effect of TCNQ layer cover on oxidation dynamics of black phosphorus. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800179.

    Article  Google Scholar 

  76. Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Heterojunction nanomedicine. Adv. Sci. 2022, 9, 2105747.

    Article  Google Scholar 

  77. Liao, J. Y.; Wu, J. X.; Dang, C. H.; Xie, L. M. Methods of transferring two-dimensional materials. Acta. Phys. Sin. 2021, 70, 028201.

    Article  Google Scholar 

  78. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    Article  CAS  Google Scholar 

  79. Jain, A.; Bharadwaj, P.; Heeg, S.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 2018, 29, 265203.

    Article  Google Scholar 

  80. Chaudhary, K.; Tamagnone, M.; Rezaee, M.; Bediako, D. K.; Ambrosio, A.; Kim, P.; Capasso, F. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 2019, 5, eaau7171.

    Article  CAS  Google Scholar 

  81. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano. 2014, 8, 8292–8299.

    Article  CAS  Google Scholar 

  82. Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H. J.; Zhou, Z. X.; Xu, Y. Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537–18541.

    Article  CAS  Google Scholar 

  83. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  CAS  Google Scholar 

  84. Walmsley, T. S.; Chamlagain, B.; Rijal, U.; Wang, T. J.; Zhou, Z. X.; Xu, Y. Q. Gate-tunable photoresponse time in black phosphorus-MoS2 heterojunctions. Adv. Opt. Mater. 2019, 7, 1800832.

    Article  Google Scholar 

  85. Dastgeer, G.; Khan, F. M.; Nazir, G.; Afzal, M. A.; Aftab, S.; Naqvi, A. B.; Cha, J.; Min, K; Jamil, Y.; Jung J.; et al. Temperature-dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces. 2018, 10, 13150–13157.

    Article  CAS  Google Scholar 

  86. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

    Article  CAS  Google Scholar 

  87. Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8266–8275.

    Article  CAS  Google Scholar 

  88. Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J. Q.; Zhou, Y.; Zeng, Y. J.; Han, S. T.; Ruan, S. C. Phosphorene/ZnO Nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 2018, 30, 1801232.

    Article  Google Scholar 

  89. Bi, J. H.; Zou, X. M.; Lv, Y. W.; Li, G. L.; Liu, X. Q.; Liu, Y.; Yu, T.; Yang, Z. Y.; Liao, L. InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions. Adv. Electron. Mater. 2020, 6, 2000291.

    Article  CAS  Google Scholar 

  90. Na, J.; Kim, Y.; Smet, J. H.; Burghard, M.; Kern, K. Gate-tunable tunneling transistor based on a thin black phosphorus-SnSe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 20973–20978.

    Article  CAS  Google Scholar 

  91. Xiong, X.; Huang, M. Q.; Hu, B.; Li, X. F.; Liu, F.; Li, S. C.; Tian, M. C.; Li, T. Y.; Song, J.; Wu, Y. Q. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron. 2020, 3, 106–112.

    Article  CAS  Google Scholar 

  92. Huber, M. A.; Mooshammer, F.; Plankl, M.; Viti, L.; Sandner, F.; Kastner, L. Z.; Frank, T.; Fabian, J.; Vitiello, M. S.; Cocker, T. L. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 2017, 12, 207–211.

    Article  CAS  Google Scholar 

  93. Jiang, X. X.; Zhang, M.; Liu, L. W.; Shi, X. Y.; Yang, Y. F.; Zhang, K.; Zhu, H.; Chen, L.; Liu, X. K.; Sun, Q. Q. et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics 2020, 9, 2487–2493.

    Article  CAS  Google Scholar 

  94. Li, D.; Zhu, C. G.; Liu, H. W.; Sun, X. X.; Zheng, B. Y.; Liu, Y.; Liu, Y.; Wang, X. W.; Zhu, X. L.; Wang, X. et al. Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Sci. Bull. 2020, 65, 293–299.

    Article  CAS  Google Scholar 

  95. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

    Article  CAS  Google Scholar 

  96. Zhang, S. M.; Deng, X. N.; Wu, Y. F.; Wang, Y. Q.; Ke, S. X.; Zhang, S. S.; Liu, K.; Lv, R. T.; Li, Z. C.; Xiong, Q. H. et al. Lateral layered semiconductor multijunctions for novel electronic devices. Chem. Soc. Rev. 2022, 51, 4000–4022.

    Article  CAS  Google Scholar 

  97. Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu Adatoms. Nano Lett. 2016, 16, 2145–2151.

    Article  CAS  Google Scholar 

  98. Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

    Article  Google Scholar 

  99. Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

    Article  CAS  Google Scholar 

  100. Kim, D. K.; Hong, S. B.; Jeong, K.; Lee, C.; Kim, H.; Cho, M. H. P-N junction diode using Plasma boron-doped black phosphorus for high-performance photovoltaic devices. ACS Nano 2019, 13, 1683–1693.

    CAS  Google Scholar 

  101. Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.

    Article  CAS  Google Scholar 

  102. Srivastava, P. K.; Hassan, Y.; De Sousa, D. J. P.; Gebredingle, Y.; Joe, M.; Ali, F.; Zheng, Y.; Yoo, W. J.; Ghosh, S.; Teherani, J. T. et al. Resonant tunnelling diodes based on twisted black phosphorus homostructures. Nat. Electron. 2021, 4, 269–276.

    Article  CAS  Google Scholar 

  103. Jia, J. Y.; Jeon, S.; Jeon, J.; Park, J. H.; Lee, S. Versatile doping control of black phosphorus and functional junction structures. J. Phys. Chem. C 2019, 123, 10682–10688.

    Article  CAS  Google Scholar 

  104. Chang, H. M.; Fan, K. L.; Charnas, A.; Ye, P. D.; Lin, Y. M.; Wu, C. I.; Wu, C. H. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors. J. Phys. D Appl. Phys. 2018, 51, 135306.

    Article  Google Scholar 

  105. Gong, F.; Wu, F.; Long, M. S.; Chen, F. S.; Su, M.; Yang, Z. Y.; Shi, J. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800310.

    Article  Google Scholar 

  106. Yang, L. M.; Charnas, A.; Qiu, G.; Lin, Y. M.; Lu, C. C.; Tsai, W.; Paduano, Q.; Snure, M.; Ye, P. D. How important is the metalsemiconductor contact for Schottky barrier transistors: A case study on few-layer black phosphorus? ACS Omega 2017, 2, 4173–4179.

    Article  CAS  Google Scholar 

  107. Li, D.; Chen, M. Y.; Zong, Q. J.; Zhang, Z. X. Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353–6359.

    Article  CAS  Google Scholar 

  108. Bian, B. A.; Yang, J. J.; Wei, J. L. Width dependent rectifying behavior in Schottky heterojunction based on black phosphorene. Mater. Chem. Phys. 2020, 239, 122048.

    Article  CAS  Google Scholar 

  109. Li, X. F.; Grassi, R.; Li, S. C.; Li, T. Y.; Xiong, X.; Low, T.; Wu, Y. Q. Anomalous temperature dependence in metal-black phosphorus contact. Nano Lett. 2018, 18, 26–31.

    Article  CAS  Google Scholar 

  110. Gao, T. T.; Li, X. F.; Xiong, X.; Huang, M. Q.; Li, T. Y.; Wu, Y. Q. Optimized transport properties in Lithium doped black phosphorus transistors. IEEE Electron. Device Lett. 2018, 39, 769–772.

    Article  CAS  Google Scholar 

  111. Jeon, S.; Jia, J. Y.; Ju, J. H.; Lee, S. Black phosphorus photodetector integrated with Au nanoparticles. Appl. Phys. Lett. 2019, 115, 183102.

    Article  Google Scholar 

  112. Wu, J. B.; Wang, N.; Yan, X. D.; Wang, H. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 2021, 14, 1863–1877.

    Article  CAS  Google Scholar 

  113. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

    Article  CAS  Google Scholar 

  114. Xie, Y.; Wu, E. X.; Zhang, J.; Hu, X. D.; Zhang, D. H.; Liu, J. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 14215–14221.

    Article  CAS  Google Scholar 

  115. Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Zhang, L. Y.; Xiao, Q. L.; Zhang, Y. P.; Fan, D. Y.; Li, J. Q.; Zhang, H. Black phosphorous/Indium Selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 2019, 7, 1900020.

    Article  Google Scholar 

  116. Zubair, M.; Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Yi, J. L.; Zhu, X. L.; Li, D.; Pan, A. L. Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode. Sci. China Mater. 2020, 63, 1570–1578.

    Article  CAS  Google Scholar 

  117. Zhang, X.; Yan, C.; Hu, X.; Dong, Q.; Liu, Z.; Lv, W.; Zeng, C.; Su, R.; Wang, Y.; Sun, T. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction. Mater. Res. Express 2021, 8, 035602.

    Article  CAS  Google Scholar 

  118. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

    Article  CAS  Google Scholar 

  119. Shim, J.; Oh, S.; Kang, D. H.; Jo, S.; Ali, H M.; Choi, W.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun. 2016, 7, 13413.

    Article  CAS  Google Scholar 

  120. Ye, L.; Wang, P.; Luo, W.; Gong, F.; Liao, L.; Liu, T.; Tong, L.; Zang, J.; Xu, J. et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

    Article  CAS  Google Scholar 

  121. Li, J. L.; Zhang, S. D.; Wang, Y. P.; Duan, H. M.; Long, M. Q. First-principles study of strain modulation in S3P2/black phosphorene vdW heterostructured nanosheets for flexible electronics. ACS Appl. Nano Mater. 2020, 3, 4407–4417.

    Article  CAS  Google Scholar 

  122. Farbod, M.; Taheri, R.; Kosarian, A. High performance photoresponsivity and high frequency of phosphorene/metal heterojunction as Schottky photodiode rectifier. Appl. Mater. 2021, 24, 101092.

    Google Scholar 

  123. Ngamwongwan, L.; Moontragoon, P.; Jarernboon, W.; Mondal, C.; Pathak, B.; Kaewmaraya, T. Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications. Appl. Surf. Sci. 2020, 504, 144327.

    Article  CAS  Google Scholar 

  124. Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv. Mater. Interfaces 2018, 5, 1800671.

    Article  Google Scholar 

  125. Hu, S. Q.; Xu, J. P.; Zhao, Q. H.; Luo, X. G.; Zhang, X. T.; Wang, T.; Jie, W. Q.; Cheng, Y. C.; Frisenda, R.; Castellanos-Gomez, A. et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv. Opt. Mater. 2021, 9, 2001802.

    Article  CAS  Google Scholar 

  126. Shih, C. C.; Huang, M. H.; Wan, C. K.; Jian, W. B.; Kono, K.; Lin, Y. F.; Ho, C. H. Tuning interface barrier in 2D BP/ReSe2 heterojunctions in control of optoelectronic performances and energy conversion efficiencies. ACS Photonics, 2020, 7, 2886–2895.

    Article  CAS  Google Scholar 

  127. Wang, L.; Huang, L.; Tan, W. C.; Feng, X. W.; Chen, L.; Ang, K. W. Pronounced photovoltaic effect in electrically tunable lateral black-phosphorus heterojunction diode. Adv. Electron. Mater. 2018, 4, 1700442.

    Article  Google Scholar 

  128. Wang, J. J.; Rousseau, A.; Yang, M.; Low, T.; Francoeur, S.; Kéna-Cohen, S. Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano. Lett. 2020, 20, 3651–3655.

    Article  CAS  Google Scholar 

  129. Zong, X. R.; Hu, H. M.; Ouyang, G.; Wang, J. W.; Shi, R.; Zhang, L.; Zeng, Q. S.; Zhu, C.; Chen, S. H.; Cheng, C. et al. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. 2020, 9, 114.

    Article  CAS  Google Scholar 

  130. Chang, T. Y.; Chen, Y. Y.; Luo, D. I.; Li, J. X.; Chen, P. L.; Lee, S.; Fang, Z. R.; Li, W. Q.; Zhang, Y. Y.; Li, M. et al. Black phosphorus mid-infrared light-emitting diodes integrated with Silicon photonic waveguides. Nano. Lett. 2020, 20, 6824–6830.

    Article  CAS  Google Scholar 

  131. Gupta, N.; Kim, H.; Azar, N. S.; Uddin, S. Z.; Lien, D. H.; Crozier, K. B.; Javey, A. Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 2022, 22, 1294–1301.

    Article  CAS  Google Scholar 

  132. Ricciardulli, A. G.; Yang, S.; Kotadiya, N. B.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Improved hole injection into Perovskite light-emitting diodes using a black phosphorus interlayer. Adv. Electron. Mater. 2019, 5, 1800687.

    Article  Google Scholar 

  133. Chen, C.; Lu, X. B.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Li, C.; Ma, C.; Yuan, S. F.; Sung, E.; Watanabe, K. et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.

    Article  CAS  Google Scholar 

  134. Li, X. S.; Deng, B. C.; Wang, X. M.; Chen, S. Z.; Vaisman, M.; Karato, S. I.; Pan, G.; Larry Lee, M.; Cha, J.; Wang, H. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.

    Article  Google Scholar 

  135. Xu, Y. J.; Shi, X. Y.; Zhang, Y. S.; Zhang, H. T.; Zhang, Q. L.; Huang, Z. L.; Xu, X. F.; Guo, J.; Zhang, H.; Sun, L. T. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.

    Article  CAS  Google Scholar 

  136. Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

    Article  Google Scholar 

  137. Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596–3604.

    Article  CAS  Google Scholar 

  138. Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688–11693.

    Article  CAS  Google Scholar 

  139. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

    Article  CAS  Google Scholar 

  140. Liu, Z. F.; Sun, Y. L.; Cao, H. Q.; Xie, D.; Li, W.; Wang, J. O.; Cheetham, A. K. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 2020, 11, 3917.

    Article  CAS  Google Scholar 

  141. Bian, S.; Wen, M.; Wang, J. H.; Yang, N.; Chu, P. K.; Yu, X. F. Edge-rich black phosphorus for photocatalytic Nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 1052–1058.

    Article  CAS  Google Scholar 

  142. Zou, B.; Qiu, S. L.; Ren, X. Y.; Zhou, Y. F.; Zhou, F.; Xu, Z. M.; Zhao, Z. X.; Song, L.; Hu, Y.; Gong, X. L. Combination of black phosphorus nanosheets and MCNTs via phosphorus-carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J. Hazard. Mater. 2020, 383, 121069.

    Article  CAS  Google Scholar 

  143. Zhao, L.; Chao, X.; Xu, N.; Ling, G. X.; Zhang, P. Strategies and applications for improving the stability of black phosphorus in physical environment. Adv. Eng. Mater. 2021, 23, 2100450.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Excellent Young Scholars (No. 61622404), the National Natural Science Foundation of China (No. 62074098), Chang Jiang (Cheung Kong) Scholars Program of Ministry of Education of China (No. Q2017081). The authors are also grateful to Dr. Xiaoming Yang and Dr. Lijuan Zhang at Zhejiang Fulai New Materials Co., Ltd. and Zhejiang Fulai New Materials Co., Ltd. for their support. The authors thank the Center for Advanced Electronic Materials and Devices (AEMD) at Shanghai Jiao Tong University for the discussion and support on device processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., He, Z., Li, X. et al. Black-phosphorus-based junctions and their optoelectronic device applications. Nano Res. 16, 1651–1669 (2023). https://doi.org/10.1007/s12274-022-5008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5008-9

Keywords

Navigation