Skip to main content
Log in

Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transparent, flexible, and high-performance triboelectric nanogenerator (TENG) from nature-derived materials are required for sustainable society development. However, low triboelectricity from natural material is generally observed. Tunable electronic band diagram (EBD) through facile manipulation is one of the efficient methods to promote the TENG output, requiring fundamental, in depth understanding. Herein, we employed the high quality, single crystal-like Ti2NbO7 nanosheets (NSs) with dual dielectric and semiconducting properties as filler for bacterial cellulose (BC)-based TENG. Several techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet—visible (UV—vis) absorption, energy dispersive X-ray spectroscopy (EDS), and synchrotron radiation X-ray tomographic microscopy (SRXTM) were applied to characterize the long-range structure, microstructure, optical properties, elemental composition, and three-dimensional (3D) distribution of components in the composites. The semi-transparent and flexible 5 vol.% Ti2NbO7 NSs/BC preserved the integrity of cellulose, contained well-dispersed nanosheets, reduced optical band gap (4.20 vs. 5.75 eV for BC), and increased surface roughness. The dielectric permittivity and conductivity increased with nanosheets content. Adding negatively-charged Ti2NbO7 NSs could regulate the charge affinity of BC composite via shifting of Fermi energy over that of Al. It is found that adding 5 vol.% NSs into the BC film improved electrical outputs (~ 36 V and ~ 8.8 µA), which are 2–4 times higher than that of pure BC, even when paired with Al which lies adjacent in triboelectric series. Our work demonstrated the method to enhance BC-based TENG performance through EBD regulation using multifunctional Ti2NbO7 NSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alanne, K.; Cao, S. L. An overview of the concept and technology of ubiquitous energy. Appl. Energy 2019, 238, 284–302.

    Article  Google Scholar 

  2. Karan, S. K.; Maiti, S.; Lee, J. H.; Mishra, Y. K.; Khatua, B. B.; Kim, J. K. Recent advances in self-powered tribo-/piezoelectric energy harvesters: All-in-one package for future smart technologies. Adv. Funct. Mater. 2020, 30, 2004446.

    Article  CAS  Google Scholar 

  3. Sriphan, S.; Vittayakorn, N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J. Sci.: Adv. Mater. Devices 2022, 7, 100461.

    CAS  Google Scholar 

  4. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  5. Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

    Article  CAS  Google Scholar 

  6. Zhou, L. L.; Liu, D.; Wang, J.; Wang, Z. L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 2020, 8, 481–506.

    Article  CAS  Google Scholar 

  7. Li, M.; Jie, Y.; Shao, L. H.; Guo, Y. L.; Cao, X.; Wang, N.; Wang, Z. L. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 2019, 12, 1831–1835.

    Article  CAS  Google Scholar 

  8. Charoonsuk, T.; Pongampai, S.; Pakawanit, P.; Vittayakorn, N. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure. Nano Energy 2021, 89, 106430.

    Article  CAS  Google Scholar 

  9. Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2018, 14, 1704152.

    Article  Google Scholar 

  10. Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

    Article  CAS  Google Scholar 

  11. Liu, L.; Zhou, L. L.; Zhang, C. G.; Zhao, Z. H.; Li, S. X.; Li, X. Y.; Yin, X.; Wang, J.; Wang, Z. L. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering. J. Mater. Chem. A 2021, 9, 21357–21365.

    Article  CAS  Google Scholar 

  12. Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

    Article  CAS  Google Scholar 

  13. Shi, K. M.; Zou, H. Y.; Sun, B.; Jiang, P. K.; He, J. L.; Huang, X. Y. Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 2020, 30, 1904536.

    Article  CAS  Google Scholar 

  14. Cui, S. N.; Zhou, L. L.; Liu, D.; Li, S. X.; Liu, L.; Chen, S. Y.; Zhao, Z. H.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5, 180–193.

    Article  CAS  Google Scholar 

  15. Kuang, H. Z.; Li, Y. B.; Huang, S. Y.; Shi, L.; Zhou, Z.; Gao, C. X.; Zeng, X. Y.; Pandey, R.; Wang, X. Z.; Dong, S. R. et al. Piezoelectric boron nitride nanosheets for high performance energy harvesting devices. Nano Energy 2021, 80, 105561.

    Article  CAS  Google Scholar 

  16. Shi, L.; Jin, H.; Dong, S. R.; Huang, S. Y.; Kuang, H. Z.; Xu, H. S.; Chen, J. K.; Xuan, W. P.; Zhang, S. M.; Li, S. J. et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 2021, 80, 105599.

    Article  CAS  Google Scholar 

  17. Kar, E.; Bose, N.; Dutta, B.; Banerjee, S.; Mukherjee, N.; Mukherjee, S. 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers. Manag. 2019, 184, 600–608.

    Article  CAS  Google Scholar 

  18. Wu, T.; Song, Y. H.; Shi, Z. Q.; Liu, D. N.; Chen, S. L.; Xiong, C. X.; Yang, Q. L. High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 2021, 80, 105541.

    Article  CAS  Google Scholar 

  19. Sriphan, S.; Charoonsuk, T.; Khaisaat, S.; Sawanakarn, O.; Pharino, U.; Phunpruch, S.; Maluangnont, T.; Vittayakorn, N. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 2021, 32, 155502.

    Article  CAS  Google Scholar 

  20. Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Pakawanit, P.; Rojviriya, C.; Vittayakorn, N. Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators. Adv. Mater. Technol. 2020, 5, 2000001.

    Article  CAS  Google Scholar 

  21. Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. Highperformance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2019, 2, 3840–3850.

    Article  CAS  Google Scholar 

  22. Osada, M.; Ebina, Y.; Funakubo, H.; Yokoyama, S.; Kiguchi, T.; Takada, K.; Sasaki, T. High-κ dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 2006, 18, 1023–1027.

    Article  CAS  Google Scholar 

  23. Osada, M.; Akatsuka, K.; Ebina, Y.; Funakubo, H.; Ono, K.; Takada, K.; Sasaki, T. Robust high-κ response in molecularly thin perovskite nanosheets. ACS Nano 2010, 4, 5225–5232.

    Article  CAS  Google Scholar 

  24. Osada, M.; Takanashi, G.; Li, B. W.; Akatsuka, K.; Ebina, Y.; Ono, K.; Funakubo, H.; Takada, K.; Sasaki, T. Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics. Adv. Funct. Mater. 2011, 21, 3482–3487.

    Article  CAS  Google Scholar 

  25. Osada, M.; Sasaki, T. Exfoliated oxidenanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503–2511.

    Article  CAS  Google Scholar 

  26. Maluangnont, T.; Matsuba, K.; Geng, F. X.; Ma, R. Z.; Yamauchi, Y.; Sasaki, T. Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater. 2013, 25, 3137–3146.

    Article  CAS  Google Scholar 

  27. Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

    Article  Google Scholar 

  28. Xu, C.; Zhang, B. B.; Wang, A. C.; Zou, H. Y.; Liu, G. L.; Ding, W. B.; Wu, C. S.; Ma, M.; Feng, P. Z.; Lin, Z. Q. et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019, 13, 2034–2041.

    CAS  Google Scholar 

  29. Kim, H. S.; Kim, D. Y.; Kim, J. E.; Kim, J. H.; Kong, D. S.; Murillo, G.; Lee, G. H.; Park, J. Y.; Jung, J. H. Ferroelectric-polymer-enabled contactless electric power generation in triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1905816.

    Article  CAS  Google Scholar 

  30. Zhou, J.; Zhang, J. N.; Deng, Y. P.; Zhao, H.; Zhang, P. Y.; Fu, S. B.; Xu, X.; Li, H. Defect-mediated work function regulation in graphene film for high-performing triboelectric nanogenerators. Nano Energy 2022, 99, 107411.

    Article  CAS  Google Scholar 

  31. Kim, I.; Jeon, H.; Kim, D.; You, J.; Kim, D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 2018, 53, 975–981.

    Article  CAS  Google Scholar 

  32. Hervieu, M.; Raveau, B. A layer structure: The titanoniobate CsTi2NbO7. J. Solid State Chem. 1980, 32, 161–165.

    Article  CAS  Google Scholar 

  33. Pan, S. H.; Zhang, Z. N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17.

    Article  Google Scholar 

  34. Kim, Y. J.; Lee, J.; Park, S.; Park, C.; Park, C.; Choi, H. J. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 2017, 7, 49368–49373.

    Article  CAS  Google Scholar 

  35. Wang, M. J.; Xu, J. S.; Zhang, X. B.; Fan, Z. C.; Tong, Z. W. Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Appl. Biochem. Biotechnol. 2018, 185, 834–846.

    Article  CAS  Google Scholar 

  36. Desrues, J.; Viggiani, G.; Bésuelle, P. Advances in X-Ray Tomography for Geomaterials; ISTE: London, 2006.

    Book  Google Scholar 

  37. Limaye, L. Drishti: A volume exploration and presentation tool. In Proceedings of the SPIE 8506 Developments in X-Ray Tomography VIII, San Diego, 2012.

  38. Kim, H. J.; Yim, E. C.; Kim, J. H.; Kim, S. J.; Park, J. Y.; Oh, I. K. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 2017, 33, 130–137.

    Article  CAS  Google Scholar 

  39. Wang, S. S.; Han, Y. H.; Ye, Y. X.; Shi, X. X.; Xiang, P.; Chen, D. L.; Li, M. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv. 2017, 7, 45145–45155.

    Article  Google Scholar 

  40. Dey, P. P.; Khare, A. Tailoring of stoichiometry and band-tail emission in PLD a-SiC thin films by varying He deposition pressure. SN Appl. Sci. 2020, 2, 1059.

    Article  CAS  Google Scholar 

  41. Xu, P. T.; Milstein, T. J.; Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11539–11547.

    Article  CAS  Google Scholar 

  42. Shibata, T.; Takanashi, G.; Nakamura, T.; Fukuda, K.; Ebina, Y.; Sasaki, T. Titanoniobate and niobate nanosheet photocatalysts: Superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ. Sci. 2011, 4, 535–542.

    Article  CAS  Google Scholar 

  43. Plermjai, K.; Boonyarattanakalin, K.; Mekprasart, W.; Phoohinkong, W.; Pavasupree, S.; Pecharapa, W. Optical absorption and ftir study of cellulose/TiO2 hybrid composites. Chiang Mai J. Sci. 2019, 46, 618–625.

    CAS  Google Scholar 

  44. Charoonsuk, T.; Sriphan, S.; Pulphol, P.; Vittayakorn, W.; Vittayakorn, N.; Maluangnont, T. AC conductivity and dielectric properties of lepidocrocite-type alkali titanate tunable by interlayer cation and intralayer metal. Inorg. Chem. 2020, 59, 15813–15823.

    Article  CAS  Google Scholar 

  45. Sriphan, S.; Pulphol, P.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. Effect of adsorbed water and temperature on the universal power law behavior of lepidocrocite-type alkali titanate ceramics. J. Phys. Chem. C 2021, 125, 12910–12920.

    Article  CAS  Google Scholar 

  46. Maluangnont, T.; Chanlek, N.; Suksawad, T.; Tonket, N.; Saikhamdee, P.; Sukkha, U.; Vittayakorn, N. Beyond soft chemistry-bulk and surface modifications of polycrystalline lepidocrocite titanate induced by post-synthesis thermal treatment. Dalton Trans. 2017, 46, 14277–14285.

    Article  CAS  Google Scholar 

  47. Maluangnont, T.; Sriphan, S.; Charoonsuk, T.; Vittayakorn, N. Dielectric spectroscopy and electric modulus analyses of Ti0.8O2 nanosheets-Ag nanoparticles-cellulose filter paper composites. Integr. Ferroelectr. 2022, 224, 214–224.

    Article  CAS  Google Scholar 

  48. Min, C.; Yu, D. M. Simultaneously improved toughness and dielectric properties of epoxy/graphite nanosheet composites. Polym. Eng. Sci. 2010, 50, 1734–1742.

    Article  CAS  Google Scholar 

  49. Xie, L. Y.; Huang, X. Y.; Huang, Y. H.; Yang, K.; Jiang, P. K. Core—shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl. Mater. Interfaces 2013, 5, 1747–1756.

    Article  CAS  Google Scholar 

  50. Li, W. Y.; Song, Z. Q.; Zhong, J. M.; Qian, J.; Tan, Z. Y.; Wu, X. Y.; Chu, H. Y.; Nie, W.; Ran, X. H. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 2019, 7, 10371–10378.

    Article  CAS  Google Scholar 

  51. Shibata, T.; Sakai, N.; Fukuda, K.; Ebina, Y.; Sasaki, T. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Phys. Chem. Chem. Phys. 2007, 9, 2413–2420.

    Article  CAS  Google Scholar 

  52. Choudhary, S.; Sengwa, R. J. Morphological, structural, dielectric and electrical properties of PEO-ZnO nanodielectric films. J. Polym. Res. 2017, 24, 54.

    Article  Google Scholar 

  53. Boukheir, S.; Samir, Z.; Belhimria, R.; Kreit, L.; Achour, M. E.; Éber, N.; Costa, L. C.; Oueriagli, A.; Outzourhit, A. Electric modulus spectroscopic studies of the dielectric properties of carbon nanotubes/epoxy polymer composite materials. J. Macromol. Sci. B 2018, 57, 210–221.

    Article  CAS  Google Scholar 

  54. Cui, P.; Parida, K.; Lin, M. F.; Xiong, J. Q.; Cai, G. F.; Lee, P. S. Transparent, flexible cellulose nanofibril-phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 2017, 4, 1700651.

    Article  Google Scholar 

  55. Roy, S.; Ko, H. U.; Maji, P. K.; Van Hai, L.; Kim, J. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 2020, 385, 123723.

    Article  CAS  Google Scholar 

  56. Nie, S. X.; Fu, Q.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Wang, S. F. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512.

    Article  CAS  Google Scholar 

  57. Shi, K. M.; Huang, X. Y.; Sun, B.; Wu, Z. Y.; He, J. L.; Jiang, P. K. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 2019, 57, 450–458.

    Article  CAS  Google Scholar 

  58. Bayan, S.; Bhattacharya, D.; Mitra, R. K.; Ray, S. K. Two-dimensional graphitic carbon nitride nanosheets: A novel platform for flexible, robust and optically active triboelectric nanogenerators. Nanoscale 2020, 12, 21334–21343.

    Article  CAS  Google Scholar 

  59. Mishra, S.; Potu, S.; Puppala, R. S.; Rajaboina, R. K.; Kodali, P.; Divi, H. A novel ZnS nanosheets-based triboelectric nanogenerator and its applications in sensing, self-powered electronics, and digital systems. Mater. Today Commun. 2022, 31, 103292.

    Article  CAS  Google Scholar 

  60. Feng, Y. M.; He, M.; Liu, X.; Wang, W.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. Alternate-layered MXene composite film-based triboelectric nanogenerator with enhanced electrical performance. Nanoscale Res. Lett. 2021, 16, 81.

    Article  CAS  Google Scholar 

  61. Sahatiya, P.; Kannan, S.; Badhulika, S. Few layer MoS2 and in situ poled pvdf nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: Energy harvesting from handwriting and human touch. Appl. Mater. Today 2018, 13, 91–99.

    Article  Google Scholar 

  62. Pang, L. L.; Li, Z. K.; Zhao, Y. L.; Zhang, X.; Du, W. W.; Chen, L.; Yu, A. F.; Zhai, J. Y. Triboelectric nanogenerator based on polyimide/boron nitride nanosheets/polyimide nanocomposite film with enhanced electrical performance. ACS Appl. Electron. Mater. 2022, 4, 3027–3035.

    Article  CAS  Google Scholar 

  63. Jiang, C. M.; Wu, C.; Li, X. J.; Yao, Y.; Lan, L. Y.; Zhao, F. N.; Ye, Z. Z.; Ying, Y. B.; Ping, J. F. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59, 268–276.

    Article  CAS  Google Scholar 

  64. Yang, P.; Wang, P. F.; Diao, D. F. Graphene nanosheets enhanced triboelectric output performances of PTFE films. ACS Appl. Electron. Mater. 2022, 4, 2839–2850.

    Article  CAS  Google Scholar 

  65. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  66. Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

    Article  CAS  Google Scholar 

  67. Zhou, Y. S.; Wang, S. H.; Yang, Y.; Zhu, G.; Niu, S. M.; Lin, Z. H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14, 1567–1572.

    Article  CAS  Google Scholar 

  68. Hajra, S.; Padhan, A. M.; Sahu, M.; Alagarsamy, P.; Lee, K.; Kim, H. J. Lead-free flexible bismuth titanate-pdms composites: A multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy 2021, 89, 106316.

    Article  CAS  Google Scholar 

  69. Lee, D. W.; Jeong, D. G.; Kim, J. H.; Kim, H. S.; Murillo, G.; Lee, G. H.; Song, H. C.; Jung, J. H. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy 2020, 76, 105066.

    Article  CAS  Google Scholar 

  70. Tan, G. J.; Shi, F. Y.; Hao, S. Q.; Chi, H.; Bailey, T. P.; Zhao, L. D.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 2015, 137, 11507–11516.

    Article  CAS  Google Scholar 

  71. Peng, J.; Zhang, H. L.; Zheng, Q. F.; Clemons, C. M.; Sabo, R. C.; Gong, S. Q.; Ma, Z. Q.; Turng, L. S. A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 2017, 9, 1428–1433.

    Article  CAS  Google Scholar 

  72. Guo, Q. Z.; Yang, L. C.; Wang, R. C.; Liu, C. P. Tunable work function of MgxZn1−xO as a viable friction material for a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2019, 11, 1420–1425.

    Article  CAS  Google Scholar 

  73. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.

    Book  Google Scholar 

  74. Zhang, R. Y.; Hummelgård, M.; Örtegren, J.; Olsen, M.; Andersson, H.; Yang, Y.; Wang, Z. L.; Olin, H.; Sutar, P.; Mihailovic, D. All-inorganic triboelectric nanogenerators based on Mo6S3I6 and indium tin oxide. Nano Energy 2021, 89, 106363.

    Article  CAS  Google Scholar 

  75. Hosseini, H.; Mousavi, S. M.; Wurm, F. R.; Goodarzi, V. Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modeling. Eur. Polym. J. 2021, 146, 110251.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of S. Sriphan was funded by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and King Mongkut’s University of Technology North Bangkok (No. RGNS 63-233), and the Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok (No. SCIEE-KMUTNB-64-002). The work of N. Vittayakorn was funded by the King Mongkut’s Institute of Technology Ladkrabang (KMITL) (No. KREF116501). The work of T. Charoonsuk was financially supported by the OPS MHESI, TSRI and Srinakharinwirot University (No. RGNS 64-211). The authors gratefully acknowledge Dr. Pattanaphong Tanphuang’s help with the white light interferometer from beamline 6 of SLRI and Miss Supharada Khaisaat and Miss Oubonwan Sawanakarn for their assistance in BC synthesis. We thank the Electron Microscopy Research and Service Center, Faculty of Science, Chiang Mai University, for assistance in TEM and SAED. The authors also acknowledge the facilities and technical assistance from the Nanotechnology and Materials Analytical Instrument Service Unit (NMIS) of the College of Materials Innovation and Technology, KMITL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naratip Vittayakorn.

Electronic supplementary material

12274_2022_4957_MOESM1_ESM.pdf

Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance

Supplementary material, approximately 8.64 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriphan, S., Pharino, U., Charoonsuk, T. et al. Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance. Nano Res. 16, 3168–3179 (2023). https://doi.org/10.1007/s12274-022-4957-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4957-3

Keywords

Navigation