Skip to main content

Surface and Interface Modified Cellulose Nanofibers for Direct Writing and Printing Triboelectric Nanogenerator

  • Conference paper
  • First Online:
Innovative Technologies for Printing, Packaging and Digital Media (CACPP 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1144))

Included in the following conference series:

  • 174 Accesses

Abstract

In recent years, cellulose has garnered significant attention in the preparation of triboelectric nanogenerators due to its excellent biodegradability and reproducibility. However, the weak surface polarity and insufficient surface functional groups have considerably constrained its progress towards achieving high-performance TENG. Here, nanocellulose (CNFs) was employed as the friction layer material for the triboelectric nanogenerator. The surface interface was modified through chemical treatment, introducing two functional groups, -NH2 and -F. Besides analyzing the electron gain and loss capabilities and polarity of two distinct functional celluloses, functionalized CNFs were also employed in a direct-writing approach to fabricate three-dimensional structures for TENG applications. Furthermore, CNFs with enhanced surface and interface can also enhance the electrical output performance of triboelectric nanogenerators. The results indicated that when the mass ratio of epoxy propyl trialkylamine chloride (EPTMAC) to cellulose was 2.0, the cationic degree was at its highest. The introduction of -F, achieved by using nano SiO2 and PFOTS, not only rendered the water contact angle of FCNF-SiO2 aerogel superhydrophobic at 150° but also yielded the maximum output voltage when the mass ratio of dried fiber to nano SiO2 was 3.0. These results further demonstrate the irreplaceable advantages and practical application potential of CNFs in the environmentally friendly mechanical energy collection system, specifically in triboelectric nanogenerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, C., Park, J.H., Koo, B., et al.: Capsule triboelectric nanogenerators: toward optional 3D integration for high output and efficient energy harvesting from broadband-amplitude vibrations. ACS Nano 12(10), 9947–9957 (2018)

    Article  Google Scholar 

  2. Xiao, T.X., Liang, X., Jiang, T., et al.: Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018)

    Google Scholar 

  3. Yin, X., Liu, D., Zhou, L., et al.: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 13(1), 698–705 (2019)

    Article  Google Scholar 

  4. Rajabi-Abhari, A., Kim, J.N., Lee, J., et al.: Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 13(1), 219–232 (2021)

    Article  Google Scholar 

  5. Bao, Y., Wang, R., Lu, Y., et al.: Lignin biopolymer based triboelectric nanogenerators. APL Mater. 5(7) (2017)

    Google Scholar 

  6. Zhao, L., Zheng, Q., Ouyang, H., et al.: A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016)

    Article  Google Scholar 

  7. Xia, K., Tang, H., Fu, J., et al.: A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy 67, 104259 (2020)

    Google Scholar 

  8. Parandeh, S., Kharaziha, M., Karimzadeh, F.: An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59, 412–421 (2019)

    Article  Google Scholar 

  9. Lu, Y., Li, X., Ping, J., et al.: A flexible, recyclable, and high-performance pullulan-based triboelectric nanogenerator (TENG). Adv. Mater. Technol. 5(2), 1900905 (2019)

    Article  MathSciNet  Google Scholar 

  10. Zhao, D., Zhu, Y., Cheng, W., et al.: Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2020)

    Article  Google Scholar 

  11. Klemm, D., Kramer, F., Moritz, S., et al.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. Engl. 50(24), 5438–5466 (2011)

    Article  Google Scholar 

  12. Bang, J., Moon, I.K., Jeon, Y.P., et al.: Fully wood-based green triboelectric nanogenerators. Appl. Surface Sci. 567, 150806 (2021)

    Google Scholar 

  13. Christian, A., Erik, J., Lars, W., et al.: Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11(4), 872–882 (2010)

    Article  Google Scholar 

  14. Peng, F., Ren, J.L., Xu, F., et al.: Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57(14), 6305–6317 (2009)

    Article  Google Scholar 

  15. Li, S., Zhang, S., Wang, X.: Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir. 24(10), 5585–5590 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 52203049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, X., Wu, X., Zhang, Z. (2024). Surface and Interface Modified Cellulose Nanofibers for Direct Writing and Printing Triboelectric Nanogenerator. In: Song, H., Xu, M., Yang, L., Zhang, L., Yan, S. (eds) Innovative Technologies for Printing, Packaging and Digital Media. CACPP 2023. Lecture Notes in Electrical Engineering, vol 1144. Springer, Singapore. https://doi.org/10.1007/978-981-99-9955-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9955-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9954-5

  • Online ISBN: 978-981-99-9955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics