Skip to main content
Log in

LiZr2(PO4)3 surface coating towards stable layer structure Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with long cycle performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li-rich manganese-based materials are considered to be the mainstream cathode materials for next-generation lithium-ion batteries due to high discharge capacity and low cost, but poor cycle life and high temperature performance limit their development. Herein, LiZr2(PO4)3 (LZPO) is coated on the surface of spherical Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCO) material by a simple wet chemical method. The LZPO layer not only has the function of traditional coating layer to inhibit the occurrence of side reactions between electrolyte and LMNCO surface but also promotes the formation of spinel phase in the layered structure, increases the content of lattice oxygen, and reduces the content of absorbed oxygen. Thus, LZPO coated LMNCO has a more stable layered structure during cycling compared pure LMNCO, which improves effectively its long life and high temperature performance. The capacity loss rate of LZPO coated LMNCO is only 16.2% and 11.9% after 350 cycles at 25 °C and 200 cycles at 50 °C, respectively. Moreover, the capacity retention rate of the full cell composed of LZPO coated LMNCO and graphite is 70.7% after 200 cycles at 1.0 C. The coating layer toward stable surface structure can provide an idea for the modification of cathode materials, especially for Li-rich manganese-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, T.; Song, W. T.; Son, D. Y.; Ono, L. K.; Qi, Y. B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.

    Article  CAS  Google Scholar 

  2. Hy, S.; Liu, H. D.; Zhang, M. H.; Qian, D. N.; Hwang, B. J.; Meng, Y. S. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ Sci. 2016, 9, 1931–1954.

    Article  CAS  Google Scholar 

  3. Lei, Y. K.; Ni, J.; Hu, Z. J.; Wang, Z. M.; Gui, F. K.; Li, B.; Ming, P. W.; Zhang, C. M.; Elias, Y.; Aurbach, D. et al. Surface modification of Li-rich Mn-based layered oxide cathodes: Challenges, materials, methods, and characterization. Adv. Energy Mater. 2020, 10, 2002506.

    Article  CAS  Google Scholar 

  4. Li, Y. W.; Li, Z. B.; Chen, C.; Yang, K.; Cao, B.; Xu, S. Y.; Yang, N.; Zhao, W. G.; Chen, H. B.; Zhang, M. J. et al. Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. J. Energy Chem. 2021, 61, 368–385.

    Article  Google Scholar 

  5. Nayak, P. K.; Erickson, E. M.; Schipper, F.; Penki, T. R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397.

    Article  Google Scholar 

  6. Liu, Y. Y.; Yang, Z.; Zhong, J. J.; Li, J. L.; Li, R. R.; Yu, Y.; Kang, F. Y. Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 2019, 13, 11891–11900.

    Article  CAS  Google Scholar 

  7. Guo, H. C.; Jia, K.; Han, S. J.; Zhao, H.; Qiu, B.; Xia, Y. G.; Liu, Z. P. Ultrafast heterogeneous nucleation enables a hierarchical surface configuration of lithium-rich layered oxide cathode material for enhanced electrochemical performances. Adv. Mater. Interfaces 2018, 5, 1701465.

    Article  Google Scholar 

  8. Tai, Z. G.; Zhu, W.; Shi, M.; Xin, Y. F.; Guo, S. W.; Wu, Y. F.; Chen, Y. Z.; Liu, Y. N. Improving electrochemical performances of lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for lithium-ion batteries. J. Colloid Interface Sci. 2020, 576, 468–475.

    Article  CAS  Google Scholar 

  9. Yu, X. Q.; Lyu, Y.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W. et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.

    Article  Google Scholar 

  10. Yang, S. Q.; Wang, P. B.; Wei, H. X.; Tang, L. B.; Zhang, X. H.; He, Z. J.; Li, Y. J.; Tong, H.; Zheng, J. C. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 2019, 63, 103889.

    Article  CAS  Google Scholar 

  11. Song, C. K.; Feng, W. J.; Shi, Z. J.; Huang, Z. Y. Coating TiO2 on lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 material to improve its electrochemical performance. Ionics 2021, 27, 457–468.

    Article  CAS  Google Scholar 

  12. Dong, S. D.; Zhou, Y.; Hai, C. X.; Zeng, J. B.; Sun, Y. X.; Ma, Y. F.; Shen, Y.; Li, X.; Ren, X. F.; Sun, C. et al. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0.54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162.

    Article  CAS  Google Scholar 

  13. Wang, M.; Chen, L.; Liu, M.; Chen, Y. B.; Gu, Y. J. Enhanced electrochemical performance of La-doped Li-rich layered cathode material. J. Alloys Compd. 2020, 848, 156620.

    Article  CAS  Google Scholar 

  14. Chen, M.; Chen, D. R.; Liao, Y. H.; Zhong, X. X.; Li, W. S.; Zhang, Y. G. Layered lithium-rich oxide nanoparticles doped with spinel phase: Acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 4575–4584.

    Article  CAS  Google Scholar 

  15. El-Shinawi, H.; Greaves, C.; Janek, J. Sol—gel synthesis and room-temperature properties of α-LiZr2(PO4)3. RSC Adv. 2015, 5, 17054–17059.

    Article  CAS  Google Scholar 

  16. Huang, L.; Liu, L.; Wu, H.; Wang, Y. J.; Liu, H.; Zhang, Y. Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries. J. Alloys Compd. 2019, 775, 921–930.

    Article  CAS  Google Scholar 

  17. Yuan, X. L.; Xu, Q. J.; Liu, X. N.; Liu, H. M.; Min, Y. L.; Xia, Y. Y. Layered cathode material with improved cycle performance and capacity by surface anchoring of TiO2 nanoparticles for Li-ion batteries. Electrochim. Acta 2016, 213, 648–654.

    Article  CAS  Google Scholar 

  18. Lee, H. J.; Lim, S. B.; Kim, J. Y.; Jeong, M.; Park, Y. J.; Yoon, W. S. Characterization and control of irreversible reaction in Li-rich cathode during the initial charge process. ACS Appl. Mater. Interfaces 2018, 10, 10804–10818.

    Article  CAS  Google Scholar 

  19. Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk—shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

    Article  CAS  Google Scholar 

  20. Xiang, Y. H.; Sun, Z.; Li, J.; Wu, X. W.; Liu, Z. X.; Xiong, L. Z.; He, Z. Q.; Long, B.; Yang, C.; Yin, Z. L. Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol—gel method. Ceram. Int. 2017, 43, 2320–2324.

    Article  CAS  Google Scholar 

  21. Shi, J. L.; Qi, R.; Zhang, X. D.; Wang, P. F.; Fu, W. G.; Yin, Y. X.; Xu, J.; Wan, L. J.; Guo, Y. G. High-thermal-and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42829–42835.

    Article  CAS  Google Scholar 

  22. Wu, B.; Yang, X. K.; Jiang, X.; Zhang, Y.; Shu, H. B.; Gao, P.; Liu, L.; Wang, X. Y. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1803392.

    Article  Google Scholar 

  23. Liu, Q.; Xie, T.; Xie, Q. S.; He, W.; Zhang, Y. G.; Zheng, H. F.; Lu, X. J.; Wei, W. S.; Sa, B.; Wang, L. S. et al. Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 8239–8248.

    Article  CAS  Google Scholar 

  24. Zhang, J. F.; Zhang, J. Y.; Ou, X.; Wang, C. H.; Peng, C. L.; Zhang, B. Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2(PO4)3. ACS Appl. Mater. Interfaces 2019, 11, 15507–15516.

    Article  CAS  Google Scholar 

  25. Pang, S. L.; Zhu, M.; Xu, K. J.; Shen, X. Q.; Wen, H. R.; Su, Y. J.; Yang, G. M.; Wu, X.; Li, S. W.; Wang, W. Z. et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 via L-ascorbic acid-based treatment as cathode material for Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1897–A1902.

    Article  CAS  Google Scholar 

  26. Jiao, L. F.; Zhang, M.; Yuan, H. T.; Zhao, M.; Guo, J.; Wang, W.; Zhou, X. D.; Wang, Y. M. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J. Power Sources 2007, 167, 178–184.

    Article  CAS  Google Scholar 

  27. Li, J.; Klöpsch, R.; Stan, M. C.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J. Power Sources 2011, 196, 4821–4825.

    Article  CAS  Google Scholar 

  28. Li, L. J.; Xu, M.; Chen, Z. Y.; Zhou, X.; Zhang, Q. B.; Zhu, H. L.; Wu, C.; Zhang, K. L. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochim. Acta 2015, 174, 446–455.

    Article  CAS  Google Scholar 

  29. Moses, A. W.; Flores, H. G. G.; Kim, J. G.; Langell, M. A. Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Appl. Surf. Sci. 2007, 253, 4782–4791.

    Article  CAS  Google Scholar 

  30. Li, J. G.; Wang, L.; Zhang, Q.; He, X. M. Synthesis and characterization of LiNi0.6Mn0.4−xCoxO2 as cathode materials for Li-ion batteries. J. Power Sources 2009, 189, 28–33.

    Article  CAS  Google Scholar 

  31. Jiang, X. D.; Wei, Y.; Yu, X. H.; Dong, P.; Zhang, Y. J.; Zhang, Y. N.; Liu, J. X. CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: Towards the excellent electrochemical performance at normal and high temperature. J. Mater. Sci. Mater. Electron. 2018, 29, 15869–15877.

    Article  CAS  Google Scholar 

  32. Hao, Y. X.; Yang, F. N.; Luo, D. D.; Tian, J. H.; Shan, Z. Q. Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13O2] for lithium ion batteries. J. Energy Chem. 2018, 27, 1239–1246.

    Article  Google Scholar 

  33. Lai, X. W.; Hu, G. R.; Peng, Z. D.; Tong, H.; Lu, Y.; Wang, Y. Z.; Qi, X. Y.; Xue, Z. C.; Huang, Y.; Du, K. et al. Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries. J. Power Sources 2019, 431, 144–152.

    Article  CAS  Google Scholar 

  34. Ji, X. Q.; Xu, Y. X.; Feng, H. L.; Wang, P. F.; Zhou, Y. C.; Song, J. C.; Xia, Q.; Tan, Q. Q. Surface LiMn1.4Ni0.5Mo0.1O4 coating and bulk Mo doping of Li-rich Mn-based Li1.2Mn0.54Ni0.13Co0.13O2 cathode with enhanced electrochemical performance for lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 47659–47670.

    Article  CAS  Google Scholar 

  35. Shi, J. L.; Xiao, D. D.; Zhang, X. D.; Yin, Y. X.; Guo, Y. G.; Gu, L.; Wan, L. J. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Res. 2017, 10, 4201–4209.

    Article  CAS  Google Scholar 

  36. Chen, M.; Xiang, X. D.; Chen, D. R.; Liao, Y. H.; Huang, Q. M.; Li, W. S. Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery. J. Power Sources 2015, 279, 197–204.

    Article  CAS  Google Scholar 

  37. Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

    Article  CAS  Google Scholar 

  38. Bao, Y. B.; Wang, J.; Qian, Y. X.; Deng, Y. F.; Yang, X. F.; Chen, G. H. An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Lirich layered oxide cathode material. Electrochim. Acta 2020, 330, 135240.

    Article  CAS  Google Scholar 

  39. Li, G. H.; Ren, Z. M.; Li, A. L.; Yu, R. Z.; Quan, W.; Wang, C. H.; Lin, T.; Yi, D.; Liu, Y.; Zhang, Q. H. et al. Highly stable surface and structural origin for lithium-rich layered oxide cathode materials. Nano Energy 2022, 98, 107169.

    Article  CAS  Google Scholar 

  40. Chen, B. Z.; Zhao, B. C.; Zhou, J. F.; Fang, Z. T.; Huang, Y. N.; Zhu, X. B.; Sun, Y. P. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J. Mater. Sci. Technol. 2019, 35, 994–1002.

    Article  CAS  Google Scholar 

  41. Yi, T. F.; Li, Y. M.; Yang, S. Y.; Zhu, Y. R.; Xie, Y. Improved cycling stability and fast charge—discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl. Mater. Interfaces 2016, 8, 32349–32359.

    Article  CAS  Google Scholar 

  42. Yi, T. F.; Han, X.; Yang, S. Y.; Zhu, Y. R. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08−xAlxO2 (0 ≤ x ≤ 0.08) as cathode materials. Sci. China Mater. 2016, 59, 618–628.

    Article  CAS  Google Scholar 

  43. Yi, T. F.; Chen, B.; Zhu, Y. R.; Li, X. Y.; Zhu, R. S. Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery. J. Power Sources 2014, 247, 778–785.

    Article  CAS  Google Scholar 

  44. Zhou, Z. W.; Luo, Z. Y.; He, Z. J.; Zheng, J. C.; Li, Y. J.; Yan, C.; Mao, J. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. J. Energy Chem. 2021, 60, 591–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from the Key Project of Science and Technology Research of Chongqing Education Commission of China (No. KJZDK201801103), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. cx2019128), and Scientific Research Foundation of Chongqing University of Technology (No. 2022ZDZ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebu Hu.

Electronic Supplementary Material

12274_2022_4897_MOESM1_ESM.pdf

LiZr2(PO4)3 surface coating towards stable layer structure Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with long cycle performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, J., Xu, C. et al. LiZr2(PO4)3 surface coating towards stable layer structure Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with long cycle performance. Nano Res. 16, 2373–2382 (2023). https://doi.org/10.1007/s12274-022-4897-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4897-y

Keywords

Navigation