Skip to main content
Log in

Coating TiO2 on lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 material to improve its electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the sol-gel method was used first to obtain the layered cathode material Li1.2Mn0.54Ni0.13Co0.13O2, and then the nanoparticles of TiO2 were coated samples in via a wet chemical process. Finally, a systematic study of the different amounts of TiO2 materials coated was carried out. XRD and SEM analysis showed that these materials after TiO2 coating have a good layered structure and regular morphology, respectively. Experiments such as XPS and TEM showed that the TiO2 nanoparticles were evenly distributed on the surface of the particles, and no substantial changes were made to each transition metal elements. Through electrochemical testing, when the TiO2 coating amount is equal to 1.0%, the first discharge-specific capacity reaches 276.5 mAh/g at 0.1 C, and the Coulomb efficiency is also as high as 80.8%. Compared with the uncoated sample, when the coating amount is 1.0%, the TiO2 coating suppresses the lack of surface oxygen and makes the structure more stable. The electrochemical performance of the material has been significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu H, Chen C, Du C, He X, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2015) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641

    CAS  Google Scholar 

  2. Yu S-Z, Luo S-H, Zhan Y, Huang H-B, Wang Q, Zhang Y-H, Liu Y-G, Hao A-I (2020) Metal-organic framework-derived cobalt nanoparticle space confined in nitrogen-doped carbon polyhedra networks as high-performance bifunctional electrocatalyst for rechargeable Li–O2 batteries. J Power Sources 453:227899–227911

    CAS  Google Scholar 

  3. Yin H, Ji S, Gu M, Zhang L, Liu J (2015) Scalable synthesis of Li1.2Mn0.54Ni0.13Co0.13O2/LiNi0.5Mn1.5O4 sphere composites as stable and high capacity cathodes for Li-ion batteries. RSC Adv 5:84673–84679

    CAS  Google Scholar 

  4. Su WX, Feng WJ, Wang S, Chen L, Li M, Song C (2019) Electrocatalysis of polysulfide conversion via sulfur–cobalt CoS2 on a carbon nanotube surface as a cathode for high-performance lithium–sulfur batteries. J Solid State Electrochem 23:2097–2105

    CAS  Google Scholar 

  5. Luo S-H, Sun Y, Bao S, Li J-Z, Zhang J, Yi T-F (2019) Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability. J Electroanal Chem 832:196–203

    CAS  Google Scholar 

  6. Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2 –MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25

    CAS  Google Scholar 

  7. Li B, Yan H, Ma J, Yu P, Xia D, Huang W, Chu W, Wu Z (2014) Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 24:5112–5118

    CAS  Google Scholar 

  8. Liu Y, Wang H, Yang K, Yang Y, Ma J, Pan K, Wang G, Ren F, Pang H (2019) Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci Basel 9:2677–2686

    CAS  Google Scholar 

  9. Dai D, Li B, Tang H, Chang K, Jiang K, Chang Z, Yuan X (2016) Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor. J Power Sources 307:665–672

    CAS  Google Scholar 

  10. Kong J-Z, Zhai H-F, Qian X, Wang M, Wang Q-Z, Li A-D, Li H, Zhou F (2017) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd 694:848–856

    CAS  Google Scholar 

  11. Bai Y, Li Y, Wu C, Lu J, Li H, Liu Z, Zhong Y, Chen S, Zhang C, Amine K, Wu F (2015) Lithium-rich nanoscale Li1.2Mn0.54Ni0.13Co0.13O2 cathode material prepared by co-precipitation combined freeze drying (CP-FD) for lithium-ion batteries. Energy Technol 3:843–850

    CAS  Google Scholar 

  12. Li M, Feng W, Wenxiao S, Wang X (2019) CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium–sulfur batteries. J Solid State Electrochem 23:2317–2324

    CAS  Google Scholar 

  13. Wang Z, Luo S, Ren J, Wang D, Qi X (2016) Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4. Appl Surf Sci 370:437–444

    CAS  Google Scholar 

  14. Zhang J, Wang J, Yang J, NuLi Y (2014) Artificial interface deriving from sacrificial tris(trimethylsilyl)phosphate additive for lithium rich cathode materials. Electrochim Acta 117:99–104

    CAS  Google Scholar 

  15. Zhang L, Jiang J, Zhang C, Wu B, Wu F (2016) High-rate layered lithium-rich cathode nanomaterials for lithium-ion batteries synthesized with the assist of carbon spheres templates. J Power Sources 331:247–257

    CAS  Google Scholar 

  16. Li J, Jia T, Liu K, Zhao J, Chen J, Cao C (2016) Facile design and synthesis of Li-rich nanoplates cathodes with habit-tuned crystal for lithium ion batteries. J Power Sources 333:37–42

    CAS  Google Scholar 

  17. Tang T, Zhang H-L (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2. Electrochim Acta 191:263–269

    CAS  Google Scholar 

  18. Thackeray MM, Johnson CS, Vaughey JT, Li N (2005) Current address: eVionyx Inc., Ha, S.A. Hackney, Advances in manganese-oxide “composite” electrodes for lithium-ion batteries. J Mater Chem 15:2257

    CAS  Google Scholar 

  19. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2(M=Mn,Ni,Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112

    CAS  Google Scholar 

  20. Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58

    CAS  Google Scholar 

  21. Liu Y, Yang Z, Li J, Niu B, Yang K, Kang F (2018) A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2 @Ce0.8Sn0.2O2−σ cathode material for Li-ion batteries with improved initial irreversible capacity loss. J Mater Chem A 6:13883–13893

    CAS  Google Scholar 

  22. Wang M, Luo M, Chen Y, Chen L, Yan S, Ren Y, Chu M (2017) A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment. J Alloys Compd 696:891–899

    CAS  Google Scholar 

  23. Chen JJ, Li ZD, Xiang HF, Wu WW, Cheng S, Zhang LJ, Wang QS, Wu YC (2015) Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. RSC Adv 5:3031–3038

    CAS  Google Scholar 

  24. Yi T-F, Mei J, Peng P-P, Luo S-H (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B 167:566–572

    CAS  Google Scholar 

  25. Chen J, Wang X, Tang F, Ye X, Yang L, Zhang Y (2020) Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms. Results Phys 16:102867

    Google Scholar 

  26. Wang C-C, Lin J-W, Yu Y-H, Lai K-H, Chiu K-F, Kei C-C (2018) Electrochemical and structural investigation on ultrathin ALD ZnO and TiO2 coated lithium-rich layered oxide cathodes. ACS Sustain Chem Eng 6:16941–16950

    CAS  Google Scholar 

  27. Ran X-X, Tao J-M, Chen Z-Y, Yan Z-R, Yang Y-M, Li J-X, Lin Y-B, Huang Z (2020) Surface heterostructure induced by TiO2 modification in Li-rich cathode materials for enhanced electrochemical performances. Electrochim Acta 353:135959

    CAS  Google Scholar 

  28. Gan Y, Wang Y, Han J, Zhang L, Sun W, Xia Y, Huang H, Zhang J, Liang C, Zhang W (2017) Synthesis and electrochemical performance of nano TiO2(B)-coated Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for lithium-ion batteries. New J Chem 41:12962–12968

    CAS  Google Scholar 

  29. Yuan X, Xu Q, Liu X, Liu H, Min Y, Xia Y (2016) Layered cathode material with improved cycle performance and capacity by surface anchoring of TiO2 nanoparticles for Li-ion batteries. Electrochim Acta 213:648–654

    CAS  Google Scholar 

  30. Xiang Y, Sun Z, Li J, Wu X, Liu Z, Xiong L, He Z, Long B, Yang C, Yin Z (2017) Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol-gel method. Ceram Int 43:2320–2324

    CAS  Google Scholar 

  31. Ma D, Li Y, Zhang P, Cooper AJ, Abdelkader AM, Ren X, Deng L (2016) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J Power Sources 311:35–41

    CAS  Google Scholar 

  32. Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang YM (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2(x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184

    CAS  Google Scholar 

  33. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799

    CAS  Google Scholar 

  34. Lu C, Yang S, Wu H, Zhang Y, Yang X, Liang T (2016) Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim Acta 209:448–455

    CAS  Google Scholar 

  35. Zhang L, Jin K, Wang L, Zhang Y, Li X, Song Y (2015) High capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries. J Alloys Compd 638:298–304

    CAS  Google Scholar 

  36. Song CK, Feng WJ, Su WX, Chen LJ, Li MM (2019) Influence of the pH of li-rich Li1.2Mn0.54Ni0.13Co0.13O2 on the electrochemical performance by sol–gel method. Integr Ferroelectr 200:117–127

    CAS  Google Scholar 

  37. Wang C, Zhou F, Chen K, Kong J, Jiang Y, Yan G, Li J, Yu C, Tang W-P (2015) Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochim Acta 176:1171–1181

    CAS  Google Scholar 

  38. Xu H, Deng S, Chen G (2014) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. J Mater Chem A 2:15015–15021

    CAS  Google Scholar 

  39. Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    CAS  Google Scholar 

  40. Liu J, Hou M, Yi J, Guo S, Wang C, Xia Y (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714

    CAS  Google Scholar 

  41. Song C, Feng W, Shi Z, Wang X (2019) Effect of drying temperature on properties of lithium-rich manganese-based materials in sol-gel method. Ionics. 25:4607–4614

    CAS  Google Scholar 

  42. Deng Y-P, Fu F, Wu Z-G, Yin Z-W, Zhang T, Li J-T, Huang L, Sun S-G (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 4:257–263

    CAS  Google Scholar 

  43. Kong J-Z, Wang C-L, Qian X, Tai G-A, Li A-D, Wu D, Li H, Zhou F, Yu C, Sun Y, Jia D, Tang W-P (2015) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2. Electrochim Acta 174:542–550

    CAS  Google Scholar 

  44. Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F (2014) In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2:18613–18623

    CAS  Google Scholar 

  45. Yan W, Xie Y, Jiang J, Sun D, Ma X, Lan Z, Jin Y (2018) Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustain Chem Eng 6:4625–4632

    CAS  Google Scholar 

  46. Zhao Y, Xia M, Hu X, Zhao Z, Wang Y, Lv Z (2015) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174

    CAS  Google Scholar 

  47. Yi T-F, Qiu L-Y, M J, Qi S-Y, Cui P, Luo S-H, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull 65:546–556

    CAS  Google Scholar 

  48. Xu G, Li J, Li X, Zhou H, Ding X, Wang X, Kang F (2015) Understanding the electrochemical superiority of 0.6Li[Li1/3Mn2/3]O2-0.4Li[Ni1/3Co1/3Mn1/3]O2 nanofibers as cathode material for lithium ion batteries. Electrochim Acta 173:672–679

    CAS  Google Scholar 

  49. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284

    CAS  Google Scholar 

  50. Feng X, Yang Z, Tang D, Kong Q, Gu L, Wang Z, Chen L (2015) Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys Chem Chem Phys 17:1257–1264

    CAS  PubMed  Google Scholar 

  51. Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a lithium ion battery cathode material. J Electroanal Chem 782:256–263

    CAS  Google Scholar 

  52. Song CK, Feng WJ, Su WX, Chen LJ, Li MM (2019) Effect of drying time on electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Int J Electrochem Sci 14:2372–2382

    CAS  Google Scholar 

  53. Mohadese R-D, Mehran J, Hamid O (2019) Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2. Solid State Ionics 331:74–88

    Google Scholar 

  54. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1502398

    Google Scholar 

  55. Yi T-F, Li Y-M, Li X-Y, Pan J-J, Zhang Q, Zhu Y-R (2017) Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci Bull 62:1007–1010

    Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No.21965019), HongLiu First-class Disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangjun Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Feng, W., Shi, Z. et al. Coating TiO2 on lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 material to improve its electrochemical performance. Ionics 27, 457–468 (2021). https://doi.org/10.1007/s11581-020-03854-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03854-5

Keywords

Navigation