Skip to main content
Log in

Defect engineering of electrocatalysts for organic synthesis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic organic synthesis has attracted considerable research attention because it is an efficient and eco-friendly strategy for converting energy sources to value-added chemicals. Defect engineering is a promising strategy for regulating the electronic structure and charge density of electrocatalysts. It endows electrocatalysts with excellent physical and physicochemical properties and optimizes the adsorption energy of the reaction intermediates to reduce the kinetic barriers of the electrosynthesis reaction. Herein, the recent advances related to the use of electrocatalysts for organic synthesis with respect to defects are systematically reviewed. The roles of defects in anodic and cathodic reactions, such as the syntheses of alkanes, alkenes, alcohols, aldehydes, amides, and carboxylic acids, are reviewed. Furthermore, the relationship between the defective structure and electrocatalytic activity is discussed by combining experimental results and theoretical calculations. Finally, the challenges, opportunities, and development prospects of defective electrocatalysts are examined to promote the development of the field of electrocatalytic organic synthesis. This review is expected to help understand the vital role of defects in catalytic processes and the controllable synthesis of efficient electrocatalysts for the production of high-value chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  2. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

    Article  CAS  Google Scholar 

  3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  4. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L. et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489.

    Article  CAS  Google Scholar 

  5. Francke, R.; Little, R. D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev. 2014, 43, 2492–2521.

    Article  CAS  Google Scholar 

  6. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

    Article  CAS  Google Scholar 

  7. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

    Article  CAS  Google Scholar 

  8. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  9. Martirez, J. M. P.; Carter, E. A. Thermodynamic constraints in using AuM (M = Fe, Co, Ni, and Mo) alloys as N2 dissociation catalysts: Functionalizing a Plasmon-active metal. ACS Nano 2016, 10, 2940–2949.

    Article  CAS  Google Scholar 

  10. Xiao, Z. H.; Xie, C.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225.

    Article  CAS  Google Scholar 

  11. Yan, X. C.; Jia, Y.; Yao, X. D. Defective structures in metal compounds for energy-related electrocatalysis. Small Struct. 2021, 2, 2000067.

    Article  CAS  Google Scholar 

  12. Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

    Article  CAS  Google Scholar 

  13. Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

    Article  CAS  Google Scholar 

  14. Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

    Article  CAS  Google Scholar 

  15. Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

    Article  CAS  Google Scholar 

  16. Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.

    Article  CAS  Google Scholar 

  17. Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A. I.; Lubomirsky, I.; Haile, S. M.; Rupp, J. L. M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592.

    Article  CAS  Google Scholar 

  18. Glass, D.; Cortés, E.; Ben-Jaber, S.; Brick, T.; Peveler, W. J.; Blackman, C. S.; Howle, C. R.; Quesada-Cabrera, R.; Parkin, I. P.; Maier, S. A. Dynamics of photo-induced surface oxygen vacancies in metal-oxide semiconductors studied under ambient conditions. Adv. Sci. 2019, 6, 1901841.

    Article  CAS  Google Scholar 

  19. Kroger, F. A. Defect chemistry in crystalline solids. Annu. Rev. Mater. Sci. 1977, 7, 449–475.

    Article  Google Scholar 

  20. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    Article  CAS  Google Scholar 

  21. Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Waterplasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.

    Article  Google Scholar 

  22. Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

    Article  CAS  Google Scholar 

  23. Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V. FeCo-Fe2CoO4/Co3O4 nanocomposites: Phase transformations as a result of thermal annealing and practical application in catalysis. Ceram. Int. 2020, 46, 10262–10269.

    Article  CAS  Google Scholar 

  24. Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part I: Thermodynamics. Angew. Chem., Int. Ed. 1993, 32, 313–335.

    Article  Google Scholar 

  25. Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part II: Kinetics. Angew. Chem., Int. Ed. 1993, 32, 528–542.

    Article  Google Scholar 

  26. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

    Article  CAS  Google Scholar 

  27. Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

    Article  Google Scholar 

  28. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  CAS  Google Scholar 

  29. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

    Article  CAS  Google Scholar 

  30. Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H. L.; Duan, X. F.; Goddard III, W. A.; Huang, Y. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 2019, 31, 1805405.

    Article  Google Scholar 

  31. Zhao, Y.; Tan, X.; Yang, W. F.; Jia, C.; Chen, X. J.; Ren, W. H.; Smith, S. C.; Zhao, C. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 21493–21498.

    Article  CAS  Google Scholar 

  32. Yang, D. X.; Zhu, Q. G.; Sun, X. F.; Chen, C. J.; Guo, W. W.; Yang, G. Y.; Han, B. X. Electrosynthesis of a defective indium selenide with 3D structure on a substrate for tunable CO2 electroreduction to syngas. Angew. Chem. 2020, 132, 2374–2379.

    Article  Google Scholar 

  33. Chen, Z. Q.; Wang, T.; Liu, B.; Cheng, D. F.; Hu, C. L.; Zhang, G.; Zhu, W. J.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883.

    Article  CAS  Google Scholar 

  34. Wu, J. J.; Liu, M. J.; Sharma, P. P.; Yadav, R. M.; Ma, L. L.; Yang, Y. C.; Zou, X. L.; Zhou, X. D.; Vajtai, R.; Yakobson, B. I. et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016, 16, 466–470.

    Article  CAS  Google Scholar 

  35. Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal—organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

    Article  Google Scholar 

  36. Xiao, Z. H.; Huang, X. B.; Xu, L.; Yan, D. F.; Huo, J.; Wang, S. Y. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem. Commun. 2016, 52, 13008–13011.

    Article  CAS  Google Scholar 

  37. Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Electrocatalysts: Ultrafine defective RuO2 electrocatalyst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy. Mater. 2019, 9, 1970136.

    Article  Google Scholar 

  38. Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.

    Article  CAS  Google Scholar 

  39. Xiao, P.; Ge, X. M.; Wang, H. B.; Liu, Z. L.; Fisher, A.; Wang, X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1520–1526.

    Article  CAS  Google Scholar 

  40. Wang, X.; Jia, Y.; Mao, X.; Zhang, L. Z.; Liu, D. B.; Song, L.; Yan, X. C.; Chen, J.; Yang, D. J.; Zhou, J. Z. et al. A directional synthesis for topological defect in carbon. Chem 2020, 6, 2009–2023.

    Article  CAS  Google Scholar 

  41. Ma, Z. L.; Dou, S.; Shen, A. L.; Tao, L.; Dai, L. M.; Wang, S. Y. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2015, 54, 1888–1892.

    Article  CAS  Google Scholar 

  42. Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

    Article  CAS  Google Scholar 

  43. Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

    Article  CAS  Google Scholar 

  44. Santhosh, N. M.; Filipič, G.; Tatarova, E.; Baranov, O.; Kondo, H.; Sekine, M.; Hori, M.; Ostrikov, K.; Cvelbar, U. Oriented carbon nanostructures by plasma processing: Recent advances and future challenges. Micromachines 2018, 9, 565.

    Article  Google Scholar 

  45. Yu, F.; Liu, M. C.; Ma, C. H.; Di, L. B.; Dai, B.; Zhang, L. L. A review on the promising plasma-assisted preparation of electrocatalysts. Nanomaterials 2019, 9, 1436.

    Article  CAS  Google Scholar 

  46. Meng, N. N.; Huang, Y. M.; Liu, Y.; Yu, Y. F.; Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2021, 2, 100378.

    Article  CAS  Google Scholar 

  47. Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

    Article  CAS  Google Scholar 

  48. Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670–8677.

    Article  CAS  Google Scholar 

  49. Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.

    Article  CAS  Google Scholar 

  50. Zheng, J. Y.; Lyu, Y. H.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv. Mater. 2018, 30, 1801773.

    Article  Google Scholar 

  51. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Article  Google Scholar 

  52. Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

    Article  CAS  Google Scholar 

  53. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  54. Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science 2005, 309, 752–755.

    Article  CAS  Google Scholar 

  55. Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

    Article  Google Scholar 

  56. Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

    Article  CAS  Google Scholar 

  57. Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.

    Article  CAS  Google Scholar 

  58. Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.

    Article  CAS  Google Scholar 

  59. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

    Article  CAS  Google Scholar 

  60. Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

    Article  Google Scholar 

  61. Vindigni, F.; Manzoli, M.; Damin, A.; Tabakova, T.; Zecchina, A. Surface and inner defects in Au/CeO2 WGS catalysts: Relation between Raman properties, reactivity, and morphology. Chem.—Eur. J. 2011, 17, 4356–4361.

    Article  CAS  Google Scholar 

  62. Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

    Article  CAS  Google Scholar 

  63. Beams, R.; Cançado, L. G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002.

    Article  CAS  Google Scholar 

  64. Zhang, D. L.; Mou, H. Y.; Lu, F.; Song, C. X.; Wang, D. B. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Appl. Catal. B: -Environ. 2019, 254, 471–478.

    Article  CAS  Google Scholar 

  65. Li, X. D.; Wang, S. M.; Li, L.; Sun, Y. F.; Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581.

    CAS  Google Scholar 

  66. Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Disordering the atomic structure of Co(II) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760.

    Article  Google Scholar 

  67. Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549.

    Article  CAS  Google Scholar 

  68. Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 11414–11419.

    Article  CAS  Google Scholar 

  69. Yin, J.; Jin, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; Xi, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

    Article  CAS  Google Scholar 

  70. Yan, H.; Shen, Q.; Sun, Y. H.; Zhao, S. M.; Lu, R. L.; Gong, M. C.; Liu, Y. B.; Zhou, X.; Jin, X.; Feng, X. et al. Tailoring facets of α-Mn2O3 microcrystalline catalysts for enhanced selective oxidation of glycerol to glycolic acid. ACS Catal. 2021, 11, 6371–6383.

    Article  CAS  Google Scholar 

  71. Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X. L.; Huang, H. J.; Shi, P. C.; Yao, Y.; Yang, H.; Li, D. J.; Zhou, X. F. et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021, 75, 10217–10227.

    Article  Google Scholar 

  72. Peña-Garcia, R.; Guerra, Y.; Castro-Lopes, S.; Camejo, Y. M.; Soares, J. M.; Franco, A.; Padrón-Hernández, E.; Cabrera-Baez, M. Morphological, magnetic and EPR studies of ZnO nanostructures doped and co-doped with Ni and Sr. Ceram. Int. 2021, 47, 28714–28722.

    Article  Google Scholar 

  73. Wang, Q.; Edalati, K.; Koganemaru, Y.; Nakamura, S.; Watanabe, M.; Ishihara, T.; Horita, Z. Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion. J. Mater. Chem. A 2020, 8, 3643–3650.

    Article  CAS  Google Scholar 

  74. Sontheimer, T.; Schnegg, A.; Steffens, S.; Ruske, F.; Amkreutz, D.; Lips, K.; Rech, B. Identification of intra-grain and grain boundary defects in polycrystalline Si thin films by electron paramagnetic resonance. Phys. Status Solidi Rapid Res. Lett. 2010, 7, 959–962.

    Article  Google Scholar 

  75. Chen, Z. X.; Su, Y.; Tang, X. H.; Zhang, X. J.; Duan, C. H.; Huang, F.; Li, Y. Manipulating grain boundary defects in π-conjugated covalent organic frameworks enabling intrinsic radical generation for photothermal conversion. Sol. RRL 2021, 5, 2100762.

    Article  CAS  Google Scholar 

  76. Han, C.; Pelaez, M.; Likodimos, V.; Kontos, A. G.; Falaras, P.; O’ Shea, K.; Dionysiou, D. D. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B: -Environ. 2011, 107, 77–87.

    Article  CAS  Google Scholar 

  77. Zhang, Y. B.; Xue, Z. M.; Zhao, X. H.; Zhang, B. L.; Mu, T. C. Controllable and facile preparation of Co9S8-Ni3S2 heterostructures embedded with N, S, O-tri-doped carbon for electrocatalytic oxidation of 5-hydroxymethylfurfural. Green Chem. 2022, 24, 1721–1731.

    Article  CAS  Google Scholar 

  78. Song, S. Q.; Li, Y.; Shi, Y. F.; Xu, Y. H.; Niu, Y. S. Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation. J. Electroanal. Chem. 2022, 906, 115986.

    Article  CAS  Google Scholar 

  79. Liu, B. Y.; Xu, S. J.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y. Q.; Wang, Y. C.; Gibson, E. K.; Catlow, C. R. A.; Yan, K. Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chem. 2021, 23, 4034–4043.

    Article  CAS  Google Scholar 

  80. Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

    Article  CAS  Google Scholar 

  81. Kumar, M.; Yun, J. H.; Bhatt, V.; Singh, B.; Kim, J.; Kim, J. S.; Kim, B. S.; Lee, C. Y. Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochim. Acta 2018, 284, 709–720.

    Article  CAS  Google Scholar 

  82. Wang, D. B.; Yu, H. T.; Zhu, Y. B.; Song, C. X. NiO nanosheets rooting into Ni-doped CeO2 microspheres for high performance of CO catalytic oxidation. Mater. Lett. 2017, 198, 168–171.

    Article  CAS  Google Scholar 

  83. Soni, S.; Dave, M.; Dalela, B.; Alvi, P. A.; Kumar, S.; Sharma, S. S.; Phase, D. M.; Gupta, M.; Dalela, S. Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS. Appl. Phys. A 2020, 126, 585.

    Article  CAS  Google Scholar 

  84. Fan, W. J.; Li, H. B.; Zhao, F. Y.; Xiao, X. J.; Huang, Y. C.; Ji, H. B.; Tong, Y. X. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 2016, 52, 5316–5319.

    Article  CAS  Google Scholar 

  85. Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2010, 135, 10411–10417.

    Article  Google Scholar 

  86. Elsayed, M.; Krause-Rehberg, R.; Eisenschmidt, C.; Eißmann, N.; Kieback, B. Defect study in CoCrFeMnNi high entropy alloy by positron annihilation lifetime spectroscopy. Phys. Status Solidi A 2018, 215, 1800036.

    Article  Google Scholar 

  87. Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

    Article  Google Scholar 

  88. Yudanov, I. V.; Sahnoun, R.; Neyman, K. M.; Rösch, N.; Hoffmann, J.; Schauermann, S.; Johánek, V.; Unterhalt, H.; Rupprechter, G.; Libuda, J. et al. CO adsorption on Pd nanoparticles: Density functional and vibrational spectroscopy studies. J. Phys. Chem. B 2003, 107, 255–264.

    Article  CAS  Google Scholar 

  89. Liu, Y.; Wu, Z.; Kuhlenbeck, H.; Freund, H. J. Surface action spectroscopy: A review and a perspective on a new technique to study vibrations at surfaces. Chem. Rec. 2021, 21, 1270–1283.

    CAS  Google Scholar 

  90. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

    Article  CAS  Google Scholar 

  91. Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

    Article  CAS  Google Scholar 

  92. Söngen, H.; Reischl, B.; Miyata, K.; Bechstein, R.; Raiteri, P.; Rohl, A. L.; Gale, J. D.; Fukuma, T.; Kühnle, A. Resolving point defects in the hydration structure of calcite (10.4) with three-dimensional atomic force microscopy. Phys. Rev. Lett. 2018, 120, 116101.

    Article  Google Scholar 

  93. Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

    Article  CAS  Google Scholar 

  94. Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.

    Article  CAS  Google Scholar 

  95. Zhao, H. Y.; Sun, C. H.; Jin, Z.; Wang, D. W.; Yan, X. C.; Chen, Z. G.; Zhu, G. S.; Yao, X. D. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739.

    Article  CAS  Google Scholar 

  96. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  CAS  Google Scholar 

  97. Zhao, Y. G.; Liu, C. B.; Wang, C. H.; Chong, X. D.; Zhang, B. Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−x nanosheet cathode. CCS Chem. 2021, 3, 507–515.

    Article  CAS  Google Scholar 

  98. Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N-N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

    Article  CAS  Google Scholar 

  99. Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, 2007056.

    Article  CAS  Google Scholar 

  100. Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

    Article  CAS  Google Scholar 

  101. Peng, T.; Zhuang, T. T.; Yan, Y.; Qian, J.; Dick, G. R.; De Bueren, J. B.; Hung, S. F.; Zhang, Y.; Wang, Z. Y.; Wicks, J. et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226–17235.

    Article  CAS  Google Scholar 

  102. Wang, X. P.; Xi, S. B.; Lee, W. S. V.; Huang, P. R.; Cui, P.; Zhao, L.; Hao, W. C.; Zhao, X. S.; Wang, Z. B.; Wu, H. J. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647.

    Article  CAS  Google Scholar 

  103. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Article  CAS  Google Scholar 

  104. Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

    Article  CAS  Google Scholar 

  105. Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.

    Article  CAS  Google Scholar 

  106. Lopez-Ruiz, J. A.; Andrews, E.; Akhade, S. A.; Lee, M. S.; Koh, K.; Sanyal, U.; Yuk, S. F.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J. et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal. 2019, 9, 9964–9972.

    Article  CAS  Google Scholar 

  107. Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis? J. Am. Chem. Soc. 2011, 133, 6914–6917.

    Article  CAS  Google Scholar 

  108. Liu, R.; Zhao, H. C.; Zhao, X. Y.; He, Z. L.; Lai, Y. J.; Shan, W. Y.; Bekana, D.; Li, G.; Liu, J. F. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ. Sci. Technol. 2018, 52, 9992–10002.

    Article  CAS  Google Scholar 

  109. Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.

    Article  CAS  Google Scholar 

  110. Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

    Article  CAS  Google Scholar 

  111. Yuan, Y.; Lei, A. W. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 2019, 52, 3309–3324.

    Article  CAS  Google Scholar 

  112. Tang, S.; Liu, Y. C.; Lei, A. W. Electrochemical oxidative cross-coupling with hydrogen evolution: A green and sustainable way for bond formation. Chem 2018, 4, 27–45.

    Article  CAS  Google Scholar 

  113. Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Z. Mechanisms of furfural reduction on metal electrodes: Distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120–14128.

    Article  CAS  Google Scholar 

  114. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER, and HER. Energy Environ. Sci. 2019, 12, 322–333.

    Article  CAS  Google Scholar 

  115. Li, Z. J.; Wei, W.; Li, H. H.; Li, S. H.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Wang, D. S.; Sun, W. W.; Guo, C. M. et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano 2021, 15, 10175–10184.

    Article  CAS  Google Scholar 

  116. Hu, T. J.; Zhang, L. N.; Wang, Y.; Yue, Z. Z.; Li, Y.; Ma, J. C.; Xiao, H.; Chen, W. W.; Zhao, M.; Zheng, Z. F. et al. Defect engineering in Pd/NiCo2O4−x for selective hydrogenation of α, β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 7851–7859.

    Article  CAS  Google Scholar 

  117. Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

    Article  CAS  Google Scholar 

  118. Horanyi, G.; Torkos, K. Electrocatalytic reduction of simple α, β unsaturated aliphatic carbonyl compounds on a platinized platinum electrode in acid media: Formation of hydrocarbons from acrolein and crotonaldehyde. J. Electroanal. Chem. Interfacial Electrochem. 1982, 136, 301–309.

    Article  CAS  Google Scholar 

  119. Carroll, K. J.; Burger, T.; Langenegger, L.; Chavez, S.; Hunt, S. T.; Román-Leshkov, Y.; Brushett, F. R. Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions. ChemSusChem 2016, 9, 1904–1910.

    Article  CAS  Google Scholar 

  120. Sauter, W.; Bergmann, O. L.; Schröder, U. Hydroxyacetone: A glycerol-based platform for electrocatalytic hydrogenation and hydrodeoxygenation processes. ChemSusChem 2017, 10, 3105–3110.

    Article  CAS  Google Scholar 

  121. Huang, X.; Zhang, L.; Li, C. P.; Tan, L. Q.; Wei, Z. D. High selective electrochemical hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuO2-SnO2-TiO2/Ti electrode. ACS Catal. 2019, 9, 11307–11316.

    Article  CAS  Google Scholar 

  122. Han, S. H.; Shi, Y. M.; Wang, C. H.; Liu, C. B.; Zhang, B. Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Rep. Phys. Sci. 2021, 2, 100337.

    Article  CAS  Google Scholar 

  123. Radkowski, K.; Sundararaju, B.; Fürstner, A. A functional-group-tolerant catalytic trans hydrogenation of alkynes. Angew. Chem. 2013, 125, 373–378.

    Article  Google Scholar 

  124. Carenco, S.; Leyva-Pérez, A.; Concepción, P.; Boissière, C.; Mézailles, N.; Sanchez, C.; Corma, A. Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 2012, 7, 21–28.

    Article  CAS  Google Scholar 

  125. Shi, Z. J.; Li, N.; Lu, H. K.; Chen, X. P.; Zheng, H. D.; Yuan, Y. F.; Ye, K. Y. Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons. Curr. Opin. Electrochem. 2021, 28, 100713.

    Article  CAS  Google Scholar 

  126. Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H(D) source over a Pd-P cathode. Angew. Chem. 2020, 132, 21356–21361.

    Article  Google Scholar 

  127. Li, J.; He, L. F.; Liu, X.; Cheng, X.; Li, G. G. Electrochemical hydrogenation with gaseous ammonia. Angew. Chem., Int. Ed. 2019, 58, 1759–1763.

    Article  CAS  Google Scholar 

  128. Liu, X.; Liu, R. Y.; Qiu, J. X.; Cheng, X.; Li, G. G. Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide. Angew. Chem., Int. Ed. 2020, 59, 13962–13967.

    Article  CAS  Google Scholar 

  129. Giesbrecht, P. K.; Nemez, D. B.; Herbert, D. E. Electrochemical hydrogenation of a benzannulated pyridine to a dihydropyridine in acidic solution. Chem. Commun. 2018, 54, 338–341.

    Article  CAS  Google Scholar 

  130. Chen, Z.; Cai, C.; Wang, T. Identification of copper as an ideal catalyst for electrochemical alkyne semi-hydrogenation. J. Phys. Chem. C 2022, 126, 3037–3042.

    Article  CAS  Google Scholar 

  131. Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Li, J.; Liang, F.; Chen, A. C. Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1, 2-dichloroethane. ACS Catal. 2019, 9, 10931–10939.

    Article  CAS  Google Scholar 

  132. Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2010, 3, 1700–1708.

    Article  Google Scholar 

  133. Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Mu, J. C.; Wang, P. L.; Chen, G. H. Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937.

    Article  CAS  Google Scholar 

  134. Shen, X. Q.; Xiao, F.; Zhao, H. Y.; Chen, Y.; Fang, C.; Xiao, R.; Chu, W. H.; Zhao, G. H. In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process. Environ. Sci. Technol. 2020, 54, 4564–4572.

    Article  CAS  Google Scholar 

  135. Yin, H. S.; Cao, X. K.; Lei, C.; Chen, W. Q.; Huang, B. B. Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem 2020, 7, 1825–1837.

    Article  CAS  Google Scholar 

  136. Martin, E. T.; McGuire, C. M.; Mubarak, M. S.; Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 2016, 116, 15198–15234.

    Article  CAS  Google Scholar 

  137. Ma, H. X.; Xu, Y. H.; Ding, X. F.; Liu, Q.; Ma, C. A. Electrocatalytic dechlorination of chloropicolinic acid mixtures by using palladium-modified metal cathodes in aqueous solutions. Electrochim. Acta 2016, 210, 762–772.

    Article  CAS  Google Scholar 

  138. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  CAS  Google Scholar 

  139. Kong, Y.; Li, Y.; Yang, B.; Li, Z. J.; Yao, Y.; Lu, J. G.; Lei, L. C.; Wen, Z. H.; Shao, M. H.; Hou, Y. Boron, and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 26272–26278.

    Article  CAS  Google Scholar 

  140. Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

    Article  CAS  Google Scholar 

  141. Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

    Article  CAS  Google Scholar 

  142. Gan, G. Q.; Fan, S. Y.; Li, X. Y.; Wang, J.; Bai, C. P.; Guo, X. C.; Tade, M.; Liu, S. M. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Catal. 2021, 11, 14284–14292.

    Article  CAS  Google Scholar 

  143. Chen, L.; Wang, Q.; Gong, H. R.; Xue, M. S. Single Mo atom supported on defective BC2N monolayers as promising electrochemical catalysts for nitrogen reduction reaction. Appl. Surf. Sci. 2021, 546, 149131.

    Article  CAS  Google Scholar 

  144. Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zhang, L. J.; Zheng, G. F. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.

    Article  CAS  Google Scholar 

  145. Brillas, E.; Sauleda, R.; Casado, J. Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J. Electrochem. Soc. 1998, 145, 759–765.

    Article  CAS  Google Scholar 

  146. Liu, X. C.; He, C. S.; Shen, Z. Y.; Li, W. Q.; Chen, N.; Song, J. S.; Zhou, X. G.; Mu, Y. Mechanistic study of Fe (III) chelate reduction in a neutral electro-Fenton process. Appl. Catal. B: -Environ. 2020, 278, 119347.

    Article  CAS  Google Scholar 

  147. Feng, Y. G.; Yang, H.; Zhang, Y.; Huang, X. Q.; Li, L. G.; Cheng, T.; Shao, Q. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020, 20, 8282–8289.

    Article  CAS  Google Scholar 

  148. Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard III, W. A.; Jiao, F. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11, 846–851.

    Article  CAS  Google Scholar 

  149. Massolo, E.; Pirola, M.; Benaglia, M. Amide bond formation strategies: Latest advances on a dateless transformation. Eur. J. Org. Chem. 2020, 2020, 4641–4651.

    Article  CAS  Google Scholar 

  150. Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2019, 2, 10–17.

    Article  CAS  Google Scholar 

  151. Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019, 2, 98–102.

    Article  CAS  Google Scholar 

  152. Shibata, M.; Furuya, N. Electrochemical synthesis of urea at gasdiffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J. Electroanal. Chem. 2001, 507, 177–184.

    Article  CAS  Google Scholar 

  153. Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J. Electrochem. Soc. 1998, 145, 595–600.

    Article  CAS  Google Scholar 

  154. Chen, C.; He, N. H.; Wang, S. Y. Electrocatalytic C-N coupling for urea synthesis. Small Sci. 2021, 7, 2100070.

    Article  Google Scholar 

  155. Zeng, Y. C.; Priest, C.; Wang, G. F.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: Progress and prospects. Small Methods 2020, 4, 2000672.

    Article  CAS  Google Scholar 

  156. Ranjit, K. T.; Varadarajan, T. K.; Viswanathan, B. Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. J. Photochem. Photobiol. A:Chem. 1995, 89, 67–68.

    Article  CAS  Google Scholar 

  157. Dima, G. E.; De Vooys, A. C. A.; Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554–555, 15–23.

    Article  Google Scholar 

  158. Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

    Article  CAS  Google Scholar 

  159. Zhou, Y. L.; Gao, Y. J.; Zhong, X.; Jiang, W. B.; Liang, Y. L.; Niu, P. F.; Li, M. C.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure. Adv. Funct. Mater. 2019, 29, 1807651.

    Article  Google Scholar 

  160. Zhang, P. L.; Sun, L. C. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chin. J. Chem. 2020, 38, 996–1004.

    Article  CAS  Google Scholar 

  161. Zhang, W. J.; Feng, J.; MacDiarmid, A. G.; Epstein, A. J. Synthesis of oligomeric anilines. Synth. Met. 1997, 84, 119–120.

    Article  CAS  Google Scholar 

  162. Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic, and electrocatalytic reactions. Appl. Catal. B: -Environ. 2018, 227, 386–408.

    Article  CAS  Google Scholar 

  163. Marquez, J.; Pletcher, D. A study of the electrochemical reduction of nitrobenzene to p-aminophenol. J. Appl. Electrochem. 1980, 10, 567–573.

    Article  CAS  Google Scholar 

  164. Cyr, A.; Huot, P.; Marcoux, J. F.; Belot, G.; Laviron, E.; Lessard, J. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes. Electrochim. Acta 1989, 34, 439–445.

    Article  CAS  Google Scholar 

  165. Chong, X. D.; Liu, C. B.; Huang, Y.; Huang, C. Q.; Zhang, B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 2020, 7, 285–295.

    Article  CAS  Google Scholar 

  166. Liu, C.; Zhang, A. Y.; Pei, D. N.; Yu, H. Q. Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO2−x single crystals. Environ. Sci. Technol. 2016, 50, 5234–5242.

    Article  CAS  Google Scholar 

  167. Yang, C. X.; Chen, H. N.; Peng, T.; Liang, B. Y.; Zhang, Y.; Zhao, W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chin. J. Catal. 2021, 42, 1831–1842.

    Article  CAS  Google Scholar 

  168. Zhou, L.; Zhu, X. R.; Su, H.; Lin, H. Z.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N. N.; Xie, C.; Li, Y. Y. et al. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci. China Chem. 2021, 64, 1586–1595.

    Article  CAS  Google Scholar 

  169. Song, Y.; Gutiérrez, O. Y.; Herranz, J.; Lercher, J. A. Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl. Catal. B: -Environ. 2016, 182, 236–246.

    Article  CAS  Google Scholar 

  170. Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W. F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.

    Article  CAS  Google Scholar 

  171. Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F. Z.; Han, G. Q.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. J. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 2018, 4, 637–649.

    Article  CAS  Google Scholar 

  172. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  CAS  Google Scholar 

  173. Antolini, E. Pt-Ni and Pt-M-Ni (M = Ru and Sn) anode catalysts for low-temperature acidic direct alcohol fuel cells: A review. Energies 2017, 10, 42.

    Article  Google Scholar 

  174. Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G. et al. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275.

    Article  CAS  Google Scholar 

  175. Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

    Article  CAS  Google Scholar 

  176. Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

    Article  Google Scholar 

  177. Yang, X. X.; Deng, P. L.; Liu, D. Y.; Zhao, S.; Li, D.; Wu, H.; Ma, Y. M.; Xia, B. Y.; Li, M. T.; Xiao, C. H. et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 2020, 8, 2472–2480.

    Article  CAS  Google Scholar 

  178. Chen, G. F.; Luo, Y. R.; Ding, L. X.; Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 2018, 8, 526–530.

    Article  CAS  Google Scholar 

  179. Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to Formate. ACS Catal. 2018, 8, 837–844.

    Article  CAS  Google Scholar 

  180. Cheng, H.; Liu, S.; Zhang, J. D.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S.; Hu, Z. P.; Wu, C. Z.; Xie, Y. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to Formate. Nano Lett. 2020, 20, 6097–6103.

    Article  CAS  Google Scholar 

  181. Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

    Article  CAS  Google Scholar 

  182. Yang, X. T.; Ma, Y. F.; Liu, Y.; Wang, K. K.; Wang, Y. Q.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Defect-induced Ce-doped Bi2WO6 for efficient electrocatalytic N2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 19864–19872.

    Article  CAS  Google Scholar 

  183. Wu, Y.; Muthukrishnan, A.; Nagata, S.; Nabae, Y. Kinetic understanding of the reduction of oxygen to hydrogen peroxide over an N-doped carbon electrocatalyst. J. Phys. Chem. C 2019, 123, 4590–4596.

    Article  CAS  Google Scholar 

  184. Wang, X. P.; Wu, H. J.; Xi, S. B.; Lee, W. S. V.; Zhang, J.; Wu, Z. H.; Wang, J. O.; Hu, T. D.; Liu, L. M.; Han, Y. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 229–237.

    Article  CAS  Google Scholar 

  185. Huang, X.; Tan, L. Q.; Zhang, L.; Li, C. P.; Wei, Z. D. Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chem. Eng. J. 2020, 382, 123006.

    Article  CAS  Google Scholar 

  186. Mertens, M.; Calberg, C.; Martinot, L.; Jérôme, R. The electroreduction of acrylonitrile: A new insight into the mechanism. Macromolecules 1996, 29, 4910–4918.

    Article  CAS  Google Scholar 

  187. Grasselli, R. K.; Burrington, J. D. Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. Adv. Catal. 1981, 30, 133–163.

    CAS  Google Scholar 

  188. Yi, H.; Zhang, G. T.; Wang, H. M.; Huang, Z. Y.; Wang, J.; Singh, A. K.; Lei, A. W. Recent advances in radical C-H activation/radical cross-coupling. Chem. Rev. 2017, 117, 9016–9085.

    Article  CAS  Google Scholar 

  189. Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 2019, 9, 6681–6691.

    Article  Google Scholar 

  190. Shen, T.; Wang, T.; Qin, C.; Jiao, N. Silver-catalyzed nitrogenation of alkynes: A direct approach to nitriles through C≡C bond cleavage. Angew. Chem. 2013, 125, 6809–6812.

    Article  Google Scholar 

  191. Shilov, A. E.; Shul’pin, G. B. Activation of C-H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932.

    Article  CAS  Google Scholar 

  192. Balaganesh, M.; Lawrence, S.; Christopher, C.; Bosco, A. J.; Kulangiappar, K.; Raj, K. J. S. Nitrate mediated oxidation of p-xylene by emulsion electrolysis. Electrochim. Acta 2013, 111, 384–389.

    Article  CAS  Google Scholar 

  193. Bejan, D.; Lozar, J.; Falgayrac, G.; Savall, A. Electrochemical assistance of catalytic oxidation in liquid phase using molecular oxygen: Oxidation of toluenes. Catal. Today 1999, 48, 363–369.

    Article  CAS  Google Scholar 

  194. Kärkäs, M. D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 2018, 47, 5786–5865.

    Article  Google Scholar 

  195. Kawamata, Y.; Yan, M.; Liu, Z. Q.; Bao, D. H.; Chen, J. S.; Starr, J. T.; Baran, P. S. Scalable, electrochemical oxidation of unactivated C-H bonds. J. Am. Chem. Soc. 2017, 139, 7448–7451.

    Article  CAS  Google Scholar 

  196. Tomás, R. A. F.; Bordado, J. C. M.; Gomes, J. F. P. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chem. Rev. 2013, 113, 7421–7469.

    Article  Google Scholar 

  197. Attanayake, N. H.; Tang, M. Performance and pathways of electrochemical cyclohexane oxidation. Curr. Opin. Electrochem. 2021, 30, 100791.

    Article  CAS  Google Scholar 

  198. Zhang, Y. J.; Yin, Z.; Hui, H. S.; Wang, H.; Li, Y. P.; Liu, G. H.; Kang, J. L.; Li, Z. H.; Mamba, B. B.; Li, J. X. Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. J. Catal. 2020, 387, 154–162.

    Article  CAS  Google Scholar 

  199. Lum, Y.; Huang, J. E.; Wang, Z. Y.; Luo, M. C.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y. H. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 2020, 3, 14–22.

    Article  CAS  Google Scholar 

  200. Song, Y. F.; Zhao, Y. H.; Nan, G. Z.; Chen, W.; Guo, Z. K.; Li, S. G.; Tang, Z. Y.; Wei, W.; Sun, Y. H. Electrocatalytic oxidation of methane to ethanol via NiO/Ni interface. Appl. Catal. B: -Environ. 2020, 270, 118888.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0710000), the National Natural Science Foundation of China (Nos. 22122901 and 21902047), the Provincial Natural Science Foundation of Hunan (Nos. 2020JJ5045, 2021JJ20024, and 2021RC3054), and the Shenzhen Science and Technology Program (No. JCYJ20210324140610028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhou, L., Wang, S. et al. Defect engineering of electrocatalysts for organic synthesis. Nano Res. 16, 1890–1912 (2023). https://doi.org/10.1007/s12274-022-4858-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4858-5

Keywords

Navigation