Skip to main content
Log in

Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work primarily is an investigation of the electronic structure properties of pure CeO2 and \({Ce}_{1-x}{Gd}_{x}{O}_{2}\) (x = 0.02, 0.04, 0.06, 0.08 and 0.10) Nanoparticles using the soft X-ray absorption spectroscopy were used to explore defects and vacancies. For this purpose, pure CeO2 and \({Ce}_{1-x}{Gd}_{x}{O}_{2}\) (x = 0.02, 0.04, 0.06, 0.08 and 0.10) nanomaterials were synthesized using the co-precipitation method. The XAS spectra at Ce M4,5, O K-edge and Gd M4,5 absorption edges clearly indicated a decrease in the valence state of Ce ions from Ce4+ to Ce3+ with the formation of oxygen vacancy defects upon incorporation of Gd3+ ions in CeO2 nanolattice. The results show meagre and sparse segregations of additive Gd+3 ions to form secondary phases in the samples. The deconvoluted Ce M4,5 peaks and O K-edge peaks clearly showed the existence of both oxidation states of Ce ions, Ce3+ and Ce4+,and also indicated the formation of oxygen vacancy defects in all the samples. The presence of Gd3+ oxidation state of Gd ions in Gd+3-doped CeO2 samples was investigated through Gd M4,5 edges. Furthermore, the origin of ferromagnetism in pure CeO2 and Gd3+-doped CeO2 samples is explained using F-centre exchange mechanism mediated by defects and oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Soni, V.S. Vats, S. Kumar, B. Dalela, M. Mishra, R.S. Meena, G. Gupta, P.A. Alvi, S. Dalela, Structural, optical and magnetic properties of Fe-doped CeO2 samples probed using X-ray photoelectron spectroscopy. J. Mater. Sci.: Mater. Electron. 29(12), 10141–10153 (2018)

    Google Scholar 

  2. S. Soni, S. Kumar, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, Defects and oxygen vacancies tailored structural and optical properties in CeO2 nanoparticles doped with Sm3+ cation. J. Alloy. Compd. 752, 520–531 (2018)

    Article  Google Scholar 

  3. S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, Concentration dependence of oxygen vacancy on the magnetism of CeO2 nanoparticles. J. Phys. Chem. C 116(15), 8707–8713 (2012)

    Article  Google Scholar 

  4. J. Dahle, Y. Arai, Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health 12(2), 1253–1278 (2015)

    Article  Google Scholar 

  5. T.H. Santos, J.P. Grilo, F.J. Loureiro, D.P. Fagg, F.C. Fonseca, D.A. Macedo, Structure, densification and electrical properties of Gd3+ and Cu2+ co-doped ceria solid electrolytes for SOFC applications: effects of Gd2O3 content. Ceram. Int. 44(3), 2745–2751 (2018)

    Article  Google Scholar 

  6. S. Soni, S. Kumar, R.S. Meena, V.S. Vats, S. Dalela, Interplay of structural, optical and magnetic properties in Gd-doped CeO2. AIP Conf. Proc. AIP Publ. LLC 1665(1), 130029 (2015)

    Article  Google Scholar 

  7. S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method. J. Phys. Chem. C 114(46), 19576–19581 (2010)

    Article  Google Scholar 

  8. J. Malleshappa, H. Nagabhushana, B.D. Prasad, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, Structural, photoluminescence and thermo luminescence properties of CeO2 nanoparticles. Optik 127(2), 855–861 (2016)

    Article  ADS  Google Scholar 

  9. K.S. Ranjith, P. Saravanan, S.H. Chen, C.L. Dong, C.L. Chen, S.Y. Chen, K. Asokan, R.T. Rajendra Kumar, Enhanced room-temperature ferromagnetism on Co-doped CeO2 nanoparticles: Mechanism and electronic and optical properties. J. Phys. Chem. C 118(46), 27039–27047 (2014)

    Article  Google Scholar 

  10. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116(10), 5987–6041 (2016)

    Article  Google Scholar 

  11. E. Swatsitang, S. Phokha, S. Hunpratub, S. Maensiri, Characterization of Sm-doped CeO2 nanoparticles and their magnetic properties. Phys. B 485, 14–20 (2016)

    Article  ADS  Google Scholar 

  12. A. Sharma, M. Varshney, H.J. Shin, Y.J. Park, M.G. Kim, T.K. Ha, K.H. Chae, S. Gautam, Electronic structure study of Ce1−xAxO2 (A = Zr & Hf) nanoparticles NEXAFS and EXAFS investigations. Phys. Chem. Chem. Phys. 16(37), 19909–19916 (2014)

    Article  Google Scholar 

  13. D.R. Mullins, S.H. Overbury, D.R. Huntley, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 409(2), 307–319 (1998)

    Article  ADS  Google Scholar 

  14. M. Abbate, H. Pen, M.T. Czyżyk, F.M.F. De Groot, J.C. Fuggle, Y.J. Ma, C.T. Chen, F. Sette, A. Fujimori, Y. Ueda, K. Kosuge, Soft X-ray absorption spectroscopy of vanadium oxides. J. Electron. Spectrosc. Relat. Phenom. 62(1–2), 185–195 (1993)

    Article  Google Scholar 

  15. S.K. Sharma, P. Thakur, S. Kumar, D.K. Shukla, N.B. Brookes, C.G. Lee, K.R. Pirota, B.H. Koo, M. Knobel, Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films 519(1), 410–413 (2010)

    Article  ADS  Google Scholar 

  16. S.O. Kucheyev, B.J. Clapsaddle, Y.M. Wang, T. van Buuren, A.V. Hamza, Electronic structure of nanoporous ceria from X-ray absorption spectroscopy and atomic multiplet calculations. Phys. Rev. B 76(23), 235420 (2007)

    Article  ADS  Google Scholar 

  17. B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V.H. Etgens, D.H. Mosca, Room temperature ferromagnetism of Co doped CeO2− δ diluted magnetic oxide: Effect of oxygen and anisotropy. Appl. Phys. Lett. 90(6), 062510 (2007)

    Article  ADS  Google Scholar 

  18. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, On the origin of ferromagnetism in CeO2 nanocubes. Appl. Phys. Lett. 93(6), 062505 (2008)

    Article  ADS  Google Scholar 

  19. W.C. Wang, S.Y. Chen, P.A. Glans, J. Guo, R.J. Chen, K.W. Fong, C.L. Chen, A. Gloter, C.L. Chang, T.S. Chan, J.M. Chen, Towards understanding the electronic structure of Fe-doped CeO2 nanoparticles with X-ray spectroscopy. Phys. Chem. Chem. Phys. 15(35), 14701–14707 (2013)

    Article  Google Scholar 

  20. S. Kumar, S. Gautam, T.K. Song, K.H. Chae, K.W. Jang, S.S. Kim, Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy. J. Alloy. Compd. 611, 329–334 (2014)

    Article  Google Scholar 

  21. S. Yamazaki, T. Matsui, T. Ohashi, Y. Arita, Defect structures in doped CeO2 studied by using XAFS spectrometry. Solid State Ionics 136, 913–920 (2000)

    Article  Google Scholar 

  22. S. Soni, N. Chouhan, R.K. Meena, S. Kumar, B. Dalela, M. Mishra, R.S. Meena, G. Gupta, S. Kumar, P.A. Alvi, S. Dalela, Electronic structure and room temperature ferromagnetism in Gd3+-doped cerium oxide nanoparticles for hydrogen generation via photocatalytic water splitting. Glob. Challen. 3(5), 1800090 (2019)

    Article  Google Scholar 

  23. K. Kumari, R.N. Aljawfi, A. Vij, K.H. Chae, M. Hashim, P.A. Alvi, S. Kumar, Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 30(5), 4562–4571 (2019)

    Google Scholar 

  24. L.A. Garvie, P.R. Buseck, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 60(12), 1943–1947 (1999)

    Article  ADS  Google Scholar 

  25. O. Yagci, The M4, 5 photo-absorption spectra of cerium in CeO2 and oxidation of metallic cerium. J. Phys. C: Solid State Phys. 19(18), 3487 (1986)

    Article  ADS  Google Scholar 

  26. V. Fernandes, I.L. Graff, J. Varalda, L. Amaral, P. Fichtner, D. Demaille, Y. Zheng, W.H. Schreiner, D.H. Mosca, Valence evaluation of cerium in nanocrystalline CeO2 films electrodeposited on Si substrates. J. Electrochem. Soc. 159(1), K27–K33 (2011)

    Article  Google Scholar 

  27. A.M. D’Angelo, A.L. Chaffee, Correlations between oxygen uptake and vacancy concentration in Pr-doped CeO2. ACS Omega 2(6), 2544–2551 (2017)

    Article  Google Scholar 

  28. C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S.I. Csiszar, H.H. Hsieh, H.J. Lin, C.T. Chen, L.H. Tjeng, Direct observation of electron doping in La0.7Ce0.3MnO3 using X-ray absorption spectroscopy. Phys. Rev. B 67(9), 092404 (2003)

    Article  ADS  Google Scholar 

  29. A. Kotani, H. Ogasawara, K. Okada, B.T. Thole, G.A. Sawatzky, Theory of multiplet structure in 4d core photo absorption spectra of CeO2. Phys. Rev. B 40(1), 65 (1989)

    Article  ADS  Google Scholar 

  30. L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys. Rev. B 69(12), 125415 (2004)

    Article  ADS  Google Scholar 

  31. F. Ye, T. Mori, D.R. Ou, J. Zou, G. Auchterlonie, J. Drennan, Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. J. Appl. Phys. 101(11), 113528 (2007)

    Article  ADS  Google Scholar 

  32. K. Song, H. Schmid, V. Srot, E. Gilardi, G. Gregori, K. Du, J. Maier, P.A. van Aken, Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry. APL Mater. 2(3), 032104 (2014)

    Article  ADS  Google Scholar 

  33. H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, Experimental evidence for self-assembly of CeO2 particles in solution: formation of single-crystalline porous CeO2 nanocrystals. J. Phys. Chem. C 116(1), 242–247 (2012)

    Article  Google Scholar 

  34. H. Hojo, T. Mizoguchi, H. Ohta, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. Nano Lett. 10(11), 4668–4672 (2010)

    Article  ADS  Google Scholar 

  35. S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, G.V. Tendeloo, High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 3(8), 3385–3390 (2011)

    Article  ADS  Google Scholar 

  36. K.R. Meihaus, S.G. Minasian, W.W. Lukens Jr., S.A. Kozimor, D.K. Shuh, T. Tyliszczak, J.R. Long, Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide (III) and uranium (III) complexes. J. Am. Chem. Soc. 136(16), 6056–6068 (2014)

    Article  Google Scholar 

  37. T. Manoubi, C. Colliex, P. Rez, Quantitative electron energy loss spectroscopy on M4,5 edges in rare earth oxides. J. Electron. Spectrosc. Relat. Phenom. 50(1), 1–18 (1990)

    Article  Google Scholar 

  38. F.M.F. De Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40(8), 5715 (1989)

    Article  ADS  Google Scholar 

  39. K. Kumari, R.N. Aljawfi, Y.S. Katharria, S. Dwivedi, K.H. Chae, R. Kumar, A. Alshoaibi, P.A. Alvi, S. Dalela, S. Kumar, Study the contribution of surface defects on the structural, electronic structural, magnetic, and photocatalyst properties of Fe: CeO2 nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 235(46), 29–39 (2019)

    Article  Google Scholar 

  40. D.R. Ou, T. Mori, F. Ye, J. Zou, G. Auchterlonie, J. Drennan, Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. Phys. Rev. B 77(2), 024108 (2008)

    Article  ADS  Google Scholar 

  41. A.L. Svitova, Y. Krupskaya, N. Samoylova, R. Kraus, J. Geck, L. Dunsch, A.A. Popov, Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3–xN2C80 (x = 1–3). Dalton Trans. 43(20), 7387–7390 (2014)

    Article  Google Scholar 

  42. C. Dallera, L. Braicovich, G. Ghiringhelli, M.A. Van Veenendaal, J.B. Goedkoop, N.B. Brookes, Resonant soft-x-ray inelastic scattering from Gd in the Gd3Ga5O12 garnet with excitation across the M5 edge. Phys. Rev. B 56(3), 1279 (1997)

    Article  ADS  Google Scholar 

  43. I.S. Roqan, S. Venkatesh, Z. Zhang, S. Hussain, I. Bantounas, J.B. Franklin, T.H. Flemban, B. Zou, J.S. Lee, U. Schwingenschlogl, P.K. Petrov, Obtaining strong ferromagnetism in diluted Gd3+-doped ZnO thin films through controlled Gd-defect complexes. J. Appl. Phys. 117(7), 073904 (2015)

    Article  ADS  Google Scholar 

  44. H. Ott, S.J. Heise, R. Sutarto, Z. Hu, C.F. Chang, H.H. Hsieh, H.J. Lin, C.T. Chen, L.H. Tjeng, Soft X-ray magnetic circular dichroism study on Gd3+-doped EuO thin films. Phys. Rev. B 73(9), 094407 (2006)

    Article  ADS  Google Scholar 

  45. L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, J.Q. Xiao, Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co-CeO2. J. Phys.: Condens. Matter 21(48), 486004 (2009)

    Google Scholar 

  46. H.S. Saini, M. Singh, A.H. Reshak, M.K. Kashyap, Accounting oxygen vacancy for half-metallicity and magnetism in Fe-doped CeO2 dilute magnetic oxide. Comput. Mater. Sci. 74, 114–118 (2013)

    Article  Google Scholar 

  47. S. Phokha, S. Pinitsoontorn, S. Maensiri, Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett. 5(4), 223–233 (2013)

    Article  Google Scholar 

  48. A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, H.J. Shin, Bifunctional Ce1− xEuxO2 (0≤ x ≤ 0.3) nanoparticles for photoluminescence and photocatalyst applications: an X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys. 17(44), 30065–30075 (2015)

    Article  Google Scholar 

  49. H. R. Khakhal, S. Kumar, S. N. Dolia, B. Dalela, V. S. Vats, S. Z. Hashmi, P. A. Alvi, S. Kumar, S. Dalela, Oxygen vacancies and F+ centre tailored room temperature ferromagnetic properties of CeO2 nanoparticles with Pr doping concentrations and annealing in hydrogen environment. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156079

    Article  Google Scholar 

Download references

Acknowledgements

Ms. Swati Soni and Ms. Mridula Dave acknowledge the DST, Govt. of India, for providing financial support vide Reference No. SR/WOS-A/PM-1021/2015 under WOS-A and SR/WOS-A/PM-84/2017. The authors are also grateful to UGC-DAE CSR, Indore Centre vide project no CSR-IC-BL-69/CSR-186/2016-17/850 for providing the support and beamtime for XAS measurements. The authors are also grateful to the “Banasthali Centre for Research and Education in Basic Sciences’’ under CURIE programme supported by the DST, Govt. of India, for providing the experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dalela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, S., Dave, M., Dalela, B. et al. Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS. Appl. Phys. A 126, 585 (2020). https://doi.org/10.1007/s00339-020-03777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03777-y

Keywords

Navigation