Skip to main content
Log in

SC79 promotes efficient entry of GDNF liposomes into brain parenchyma to repair dopamine neurons through reversible regulation of tight junction proteins

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 March 2023

This article has been updated

Abstract

Glial cell line-derived neurotrophic factor (GDNF), a disease-modifying drug for Parkinson’s disease (PD) is in Phase 2 clinical trials (EudraCT number: 2011-003866-34), however it is administered by direct intrastriatal delivery via stereotaxy, which is accompanied with intracranial infection, brain tissue damage, and other complications. In addition, because of complex administration routes, clinical trials of GDNF have yielded contrary results, largely due to differences in dose and concentration brought by intracranial device. Herein, a small molecular agonist SC79 was screened to open blood-brain barrier (BBB) and promote GDNF liposomes to get into brain. SC79 reversibly reduces the expression of claudin-5, one of dominant tight junctions of BBB. Animal study showed SC79 promoted liposomes to enter into brain parenchyma 2.43 times more than that of the control. Motor deficits of PD mice receiving SC79 and brain-targeted GDNF liposomes were recovered by 36.70% and tyrosine hydroxylase positive neurons in striatum were restored by 39.90%. Our combination therapy effectively avoids the side effects such as secondary infection and uneven delivery caused by intracranial injection, improving patients’ compliance and providing valuable research ideas for the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Bloem, B. R.; Okun, M. S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303.

    Article  CAS  Google Scholar 

  2. Kordower, J. H.; Emborg, M. E.; Bloch, J.; Ma, S. Y.; Chu, Y. P.; Leventhal, L.; McBride, J.; Chen, E. Y.; Palfi, S.; Roitberg, B. Z. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000, 290, 767–773.

    Article  CAS  Google Scholar 

  3. Gill, S. S.; Patel, N. K.; Hotton, G. R.; O’Sullivan, K.; McCarter, R.; Bunnage, M.; Brooks, D. J.; Svendsen, C. N.; Heywood, P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 2003, 9, 589–595.

    Article  CAS  Google Scholar 

  4. Love, S.; Plaha, P.; Patel, N. K.; Hotton, G. R.; Brooks, D. J.; Gill, S. S. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med. 2005, 11, 703–704.

    Article  CAS  Google Scholar 

  5. Patel, N. K.; Pavese, N.; Javed, S.; Hotton, G. R.; Brooks, D. J.; Gill, S. S. Benefits of putaminal GDNF infusion in Parkinson disease are maintained after GDNF cessation. Neurology 2013, 81, 1176–1178.

    Article  Google Scholar 

  6. Patel, N. K.; Bunnage, M.; Plaha, P.; Svendsen, C. N.; Heywood, P.; Gill, S. S. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: A two-year outcome study. Ann. Neurol. 2005, 57, 298–302.

    Article  CAS  Google Scholar 

  7. Gantner, C. W.; de Luzy, I. R.; Kauhausen, J. A.; Moriarty, N.; Niclis, J. C.; Bye, C. R.; Penna, V.; Hunt, C. P. J.; Ermine, C. M.; Pouton, C. W. et al. Viral delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson’s disease. Cell Stem Cell 2020, 26, 511–526.E5.

    Article  CAS  Google Scholar 

  8. Whone, A.; Luz, M.; Boca, M.; Woolley, M.; Mooney, L.; Dharia, S.; Broadfoot, J.; Cronin, D.; Schroers, C.; Barua, N. U. et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 2019, 142, 512–525.

    Article  Google Scholar 

  9. Cothros, N.; Medina, A.; Bruno, V. Intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease: Seeking the path to neurorestoration. Mov. Disord. Clin. Pract. 2019, 6, 280–281.

    Article  Google Scholar 

  10. Quinn, T. J.; Drozdowska, B. A. Stroke prediction and the future of prognosis research. Nat. Rev. Neurol. 2019, 15, 311–312.

    Article  Google Scholar 

  11. Gash, D. M.; Gerhardt, G. A.; Bradley, L. H.; Wagner, R.; Slevin, J. T. GDNF clinical trials for Parkinson’s disease: A critical human dimension. Cell Tissue Res. 2020, 382, 65–70.

    Article  Google Scholar 

  12. Abrahao, A.; Meng, Y.; Llinas, M.; Huang, Y. X.; Hamani, C.; Mainprize, T.; Aubert, I.; Heyn, C.; Black, S. E.; Hynynen, K. et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 2019, 10, 4373.

    Article  Google Scholar 

  13. Chu, C. Y.; Jablonska, A.; Lesniak, W. G.; Thomas, A. M.; Lan, X. Y.; Linville, R. M.; Li, S.; Searson, P. C.; Liu, G. S.; Pearl, M. et al. Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. J. Control. Release 2020, 317, 312–321.

    Article  CAS  Google Scholar 

  14. Zhang, C.; Feng, W.; Li, Y. S.; Kurths, J.; Yu, T. T.; Semyachkina-Glushkovskaya, O.; Zhu, D. Age differences in photodynamic therapy-mediated opening of the blood-brain barrier through the optical clearing skull window in mice. Lasers Surg. Med. 2019, 51, 625–633.

    Article  Google Scholar 

  15. Mathews, M. S.; Shih, E. C.; Zamora, G.; Sun, C. H.; Hirschberg, H.; Blickenstaff, J.; Vo, V.; Madsen, S. J. Photochemical internalization of bleomycin for glioma treatment. J. Biomed. Opt. 2012, 17, 058001.

    Article  Google Scholar 

  16. Tan, L. W.; Wang, Y. Y.; Jiang, Y.; Wang, R.; Zu, J. Z.; Tan, R. Hydroxysafflor yellow a together with blood-brain barrier regulator lexiscan for cerebral ischemia reperfusion injury treatment. ACS Omega 2020, 5, 19151–19164.

    Article  CAS  Google Scholar 

  17. Al-Ahmad, A. J.; Pervaiz, I.; Karamyan, V. T. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J. Neuroendocrinol. 2021, 33, e12931.

    Article  CAS  Google Scholar 

  18. Obermeier, B.; Daneman, R.; Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013, 19, 1584–1596.

    Article  CAS  Google Scholar 

  19. Wen, L. J.; Wang, K.; Zhang, F. T.; Tan, Y. N.; Shang, X. W.; Zhu, Y.; Zhou, X. Q.; Yuan, H.; Hu, F. Q. AKT activation by SC79 to transiently re-open pathological blood brain barrier for improved functionalized nanoparticles therapy of glioblastoma. Biomaterials 2020, 237, 119793.

    Article  CAS  Google Scholar 

  20. Morad, G.; Carman, C. V.; Hagedorn, E. J.; Perlin, J. R.; Zon, L. I.; Mustafaoglu, N.; Park, T. E.; Ingber, D. E.; Daisy, C. C.; Moses, M. A. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano 2019, 13, 13853–13865.

    Article  CAS  Google Scholar 

  21. Zhou, X.; Miao, Y. Q.; Wang, Y.; He, S. F.; Guo, L. M.; Mao, J. S.; Chen, M. S.; Yang, Y. T.; Zhang, X. X.; Gan, Y. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 2022, 11, e12198.

    Article  CAS  Google Scholar 

  22. Munji, R. N.; Soung, A. L.; Weiner, G. A.; Sohet, F.; Semple, B. D.; Trivedi, A.; Gimlin, K.; Kotoda, M.; Korai, M.; Aydin, S. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat. Neurosci. 2019, 22, 1892–1902.

    Article  CAS  Google Scholar 

  23. Sweeney, M. D.; Ayyadurai, S.; Zlokovic, B. V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783.

    Article  CAS  Google Scholar 

  24. Nutt, J. G.; Burchiel, K. J.; Comella, C. L.; Jankovic, J.; Lang, A. E.; Laws, E. R.; Lozano, A. M.; Penn, R. D.; Simpson, R. K.; Stacy, M. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003, 60, 69–73.

    Article  CAS  Google Scholar 

  25. Slevin, J. T.; Gerhardt, G. A.; Smith, C. D.; Gash, D. M.; Kryscio, R.; Young, B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg. 2005, 102, 216–222.

    Article  CAS  Google Scholar 

  26. Lang, A. E.; Gill, S.; Patel, N. K.; Lozano, A.; Nutt, J. G.; Penn, R.; Brooks, D. J.; Hotton, G.; Moro, E.; Heywood, P. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 2006, 59, 459–466.

    Article  CAS  Google Scholar 

  27. Bartus, R. T.; Kordower, J. H.; Johnson, E. M. Jr.; Brown, L.; Kruegel, B. R.; Chu, Y.; Baumann, T. L.; Lang, A. E.; Olanow, C. W.; Herzog, C. D. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol. Dis. 2015, 78, 162–171.

    Article  CAS  Google Scholar 

  28. Barker, R. A.; Björklund, A.; Gash, D. M.; Whone, A.; van Laar, A.; Kordower, J. H.; Bankiewicz, K.; Kieburtz, K.; Saarma, M.; Booms, S. et al. GDNF and Parkinson’s disease: Where next? A summary from a recent workshop. J. Parkinsons. Dis. 2020, 10, 875–891.

    Article  CAS  Google Scholar 

  29. Zhu, J. L.; Wu, Y. Y.; Wu, D.; Luo, W. F.; Zhang, Z. Q.; Liu, C. F. SC79, a novel Akt activator, protects dopaminergic neuronal cells from MPP+ and rotenone. Mol. Cell. Biochem. 2019, 461, 81–89.

    Article  CAS  Google Scholar 

  30. Lv, J. J.; Hu, W.; Yang, Z.; Tian, L.; Jiang, S.; Ma, Z. Q.; Chen, F. L.; Yang, Y. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog. Neurobiol. 2018, 161, 79–96.

    Article  CAS  Google Scholar 

  31. Meng, Y.; Pople, C. B.; Lea-Banks, H.; Abrahao, A.; Davidson, B.; Suppiah, S.; Vecchio, L. M.; Samuel, N.; Mahmud, F.; Hynynen, K. et al. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J. Control. Release 2019, 309, 25–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jingyao Chen and Qiong Huang from the public technology platform of Zhejiang University School of Medicine for their help in immunohistochemical experiments on brain slices. We thank Hangjun Wu in the Center of Cryo-Electron Microscopy (CCEM), Zhejiang University for their technical assistance on two photon imaging. This work was supported by the National Natural Science Foundation of China (No. 81973267) and Natural Science Foundation of Zhejiang Province (No. LD19H300001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Hu.

Electronic Supplementary Material

12274_2022_4857_MOESM1_ESM.pdf

SC79 promotes efficient entry of GDNF liposomes into brain parenchyma to repair dopamine neurons through reversible regulation of tight junction proteins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, L., Wang, K. et al. SC79 promotes efficient entry of GDNF liposomes into brain parenchyma to repair dopamine neurons through reversible regulation of tight junction proteins. Nano Res. 16, 2695–2705 (2023). https://doi.org/10.1007/s12274-022-4857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4857-6

Keywords

Navigation