Skip to main content
Log in

Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano—bio interactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A thorough understanding of antimicrobial mechanism is of great importance for developing novel, efficient antibacterial agents. While cationic nanoparticles, such as metal nanoclusters (NCs), represent an attractive type of antibacterial nanoagents, their interactions with bacteria remains largely un-elucidated. Herein, we report the synthesis of cationic bovine serum albumin-protected AuAgNCs (cBSA-AuAgNCs), which exhibit both near-infrared (NIR) fluorescence properties and significant antimicrobial effects. With E. coli and S. aureus as the representative bacteria, we investigated the antimicrobial process of cBSA-AuAgNCs in real-time based on their intrinsic fluorescence properties via fluorescence imaging. Our results showed that these cBSA-AuAgNCs exert their antimicrobial effects primarily by attaching on the outer membrane of bacteria without obvious internalization, which is significantly different from the antibacterial process of negatively-charged metal NCs. Further mechanistic investigation showed that these cationic NCs will cause serious disruption to the bacterial membrane due to strong electrostatic interactions, which then leads to over accumulation of reactive oxygen species (ROS) that finally causes the bactericidal action. This study demonstrates the great potential of cationic luminescent metal NCs as novel, traceable antimicrobial agents, which also provides new tools for further understanding microbial interactions of nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasilev, K.; Sah, V.; Anselme, K.; Ndi, C.; Mateescu, M.; Dollmann, B.; Martinek, P.; Ys, H.; Ploux, L.; Griesser, H. J. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett. 2010, 10, 202–207.

    Article  CAS  Google Scholar 

  2. Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020, 13, 496–502.

    Article  CAS  Google Scholar 

  3. Neu, H. C. The crisis in antibiotic resistance. Science 1992, 257, 1064–1073.

    Article  CAS  Google Scholar 

  4. Levy, S. B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129.

    Article  CAS  Google Scholar 

  5. Chen, X. K.; Zhang, X. D.; Lin, F. M.; Guo, Y. X.; Wu, F. G. One-step synthesis of epoxy group-terminated organosilica nanodots: A versatile nanoplatform for imaging and eliminating multidrug-resistant bacteria and their biofilms. Small 2019, 15, 1901647.

    Article  Google Scholar 

  6. Mei, L.; Lu, Z. T.; Zhang, X. E.; Li, C. X.; Jia, Y. X. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl. Mater. Interfaces 2014, 6, 15813–15821.

    Article  CAS  Google Scholar 

  7. Pillai, P. P.; Kowalczyk, B.; Kandere-Grzybowska, K.; Borkowska, M.; Grzybowski, B. A. Engineering Gram selectivity of mixed-charge gold nanoparticles by tuning the balance of surface charges. Angew. Chem., Int. Ed. 2016, 55, 8610–8614.

    Article  CAS  Google Scholar 

  8. Pranantyo, D.; Liu, P.; Zhong, W. B.; Kang, E. T.; Chan-Park, M. B. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial targeting and imaging. Biomacromolecules 2019, 20, 2922–2933.

    Article  CAS  Google Scholar 

  9. Yang, J. J.; Zhang, X. D.; Ma, Y. H.; Gao, G.; Chen, X. K.; Jia, H. R.; Li, Y. H.; Chen, Z.; Wu, F. G. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl. Mater. Interfaces 2016, 8, 32170–32181.

    Article  CAS  Google Scholar 

  10. Li, D.; Kumari, B.; Makabenta, J. M.; Tao, B. L.; Qian, K.; Mei, X. F.; Rotello, V. M. Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J. Mater. Chem. B 2020, 8, 9466–9480.

    Article  CAS  Google Scholar 

  11. Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

    Article  CAS  Google Scholar 

  12. Lin, B.; Li, R.; Handley, T. N. G.; Wade, J. D.; Li, W. Y.; O’Brien-Simpson, N. M. Cationic antimicrobial peptides are leading the way to combat oropathogenic infections. ACS Infect. Dis. 2021, 7, 2959–2970.

    Article  CAS  Google Scholar 

  13. Sang, Y. J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z. W.; Ren, J. S.; Qu, X. G. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518.

    Article  Google Scholar 

  14. Hayden, S. C.; Zhao, G. X.; Saha, K.; Phillips, R. L.; Li, X. N.; Miranda, O. R.; Rotello, V. M.; El-Sayed, M. A.; Schmidt-Krey, I.; Bunz, U. H. F. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J. Am. Chem. Soc. 2012, 134, 6920–6923.

    Article  CAS  Google Scholar 

  15. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 6904–6910.

    Article  CAS  Google Scholar 

  16. Zheng, K. Y.; Xie, J. P. Cluster materials as traceable antibacterial agents. Acc. Mater. Res. 2021, 2, 1104–1116.

    Article  CAS  Google Scholar 

  17. Yougbare, S.; Chang, T. K.; Tan, S. H.; Kuo, J. C.; Hsu, P. H.; Su, C. Y.; Kuo, T. R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci. 2019, 20, 2924.

    Article  CAS  Google Scholar 

  18. Wang, Z. P.; Fang, Y. S.; Zhou, X. F.; Li, Z. B.; Zhu, H. G.; Du, F. L.; Yuan, X.; Yao, Q. F.; Xie, J. P. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203–208.

    Article  CAS  Google Scholar 

  19. Li, Y. X.; Zhen, J. B.; Tian, Q.; Shen, C. Q.; Zhang, L. B.; Yang, K. W.; Shang, L. One step synthesis of positively charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant bacteria and biofilms. J. Colloid Interface Sci. 2020, 569, 235–243.

    Article  CAS  Google Scholar 

  20. Xie, Y. Z. Y.; Liu, Y.; Yang, J. C.; Liu, Y.; Hu, F. P.; Zhu, K.; Jiang, X. Y. Gold nanoclusters for targeting methicillin-resistant staphylococcus aureus in vivo. Angew. Chem., Int. Ed. 2018, 57, 3958–3962.

    Article  CAS  Google Scholar 

  21. Mi, W. Y.; Tang, S.; Guo, S. S.; Li, H. J.; Shao, N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. Chin. Chem. Lett. 2022, 33, 1331–1336.

    Article  CAS  Google Scholar 

  22. Zheng, Y. K.; Wu, J. B.; Jiang, H.; Wang, X. M. Gold nanoclusters for theranostic applications. Coord. Chem. Rev. 2021, 431, 213689.

    Article  CAS  Google Scholar 

  23. Qiao, Z. J.; Zhang, J.; Hai, X.; Yan, Y. C.; Song, W. L.; Bi, S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens. Bioelectron. 2021, 176, 112898.

    Article  CAS  Google Scholar 

  24. Shang, L.; Nienhaus, G. U. Research update: Interfacing ultrasmall metal nanoclusters with biological systems. APL Mater. 2017, 5, 053101.

    Article  Google Scholar 

  25. Su, Y.; Xue, T. T.; Liu, Y. X.; Qi, J. X.; Jin, R. C.; Lin, Z. K. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251–1265.

    Article  CAS  Google Scholar 

  26. Yang, L. X.; Shang, L.; Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 2013, 5, 1537–1543.

    Article  CAS  Google Scholar 

  27. Xu, J.; Shang, L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin. Chem. Lett. 2018, 29, 1436–1444.

    Article  CAS  Google Scholar 

  28. Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

    Article  CAS  Google Scholar 

  29. Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

    Article  CAS  Google Scholar 

  30. Crawford, S. E.; Hartmann, M. J.; Millstone, J. E. Surface chemistry-mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695–703.

    Article  CAS  Google Scholar 

  31. Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

    Article  Google Scholar 

  32. Wang, Z. J.; Li, Q.; Tan, L. L.; Liu, C. G.; Shang, L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J. Anal. Test. 2022, 6, 163–177.

    Article  Google Scholar 

  33. Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, H. K. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 2018, 76, 501–509.

    Article  CAS  Google Scholar 

  34. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  CAS  Google Scholar 

  35. Zhong, W. C.; Wen, M. Y.; Xu, J.; Wang, H. X.; Tan, L. L.; Shang, L. Simultaneous regulation of optical properties and cellular behaviors of gold nanoclusters by pre-engineering the biotemplates. Chem. Commun. 2020, 56, 11414–11417.

    Article  CAS  Google Scholar 

  36. He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B. He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B.. Nano Res. 2021, 14, 1087–1094.

    Article  CAS  Google Scholar 

  37. Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

    Article  CAS  Google Scholar 

  38. Xu, J.; Li, J. M.; Zhong, W. C.; Wen, M. Y.; Sukhorukov, G.; Shang, L. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response. Chin. Chem. Lett. 2021, 32, 2390–2394.

    Article  CAS  Google Scholar 

  39. Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

    Article  CAS  Google Scholar 

  40. Wilson, W. W.; Wade, M. M.; Holman, S. C.; Champlin, F. R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 2001, 43, 153–164.

    Article  CAS  Google Scholar 

  41. Zhang, Y. Q.; Hudson-Smith, N. V.; Frand, S. D.; Cahill, M. S.; Davis, L. S.; Feng, Z. V.; Haynes, C. L.; Hamers, R. J. Influence of the spatial distribution of cationic functional groups at nanoparticle surfaces on bacterial viability and membrane interactions. J. Am. Chem. Soc. 2020, 142, 10814–10823.

    Article  CAS  Google Scholar 

  42. Dutta, D.; Chattopadhyay, A.; Ghosh, S. S. Cationic BSA templated Au-Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater. Sci. Eng. 2016, 2, 2090–2098.

    Article  CAS  Google Scholar 

  43. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.

    Article  CAS  Google Scholar 

  44. Cao, W. W.; Wang, X.; Li, Q.; Peng, X. F.; Wang, L. N.; Li, P. L.; Ye, Z. W.; Xing, X. D. Designing of membrane-active nanoantimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity. Mater. Sci. Eng. C 2018, 92, 307–316.

    Article  CAS  Google Scholar 

  45. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Observing antimicrobial process with traceable gold nanoclusters. Nano Res. 2021, 14, 1026–1033.

    Article  CAS  Google Scholar 

  46. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact. Mater. 2021, 6, 941–950.

    Article  CAS  Google Scholar 

  47. Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc. 2010, 132, 12349–12356.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Youth Talents Programme, the Natural Science Foundation of Chongqing (No. cstc2021jcyj-msxmX0980), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU, No. 2020-QZ-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qu, S., Xue, Y. et al. Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano—bio interactions. Nano Res. 16, 999–1008 (2023). https://doi.org/10.1007/s12274-022-4837-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4837-x

Keywords

Navigation