Skip to main content
Log in

Boosting photocatalytic hydrogen production via interfacial engineering over a Z-scheme core/shell heterojunction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing high efficacy photocatalysts is a promising way to improve solar fuel production efficiency. In this work, we prepared a core/shell composite of loose ZnCr layered double hydroxide nanosheets modified CdS nanorods for efficient visible light driven photocatalytic hydrogen production. The highest hydrogen production rate achieved 425.8 µmol·h−1 without adding any noble metal cocatalyst under the visible light stimulus, which is 22.4 times that of 1 wt.% Pt-modified CdS. The corresponding apparent quantum yield is 13.9% at 420 nm. It is revealed that the synergistic actions of the interfacial redox shuttle of Cr3+/Crδ+ and the interfacial electric field enable the efficient separation of photoinduced charge carriers between two components via a Z-scheme energy band configuration. Meanwhile, with the hydrogen evolution contribution of Zn2+, a remarkable improvement in photocatalytic performance was achieved in contrast to bare CdS. This work provides an effective methodology to construct highly efficient and economically viable photocatalysts for solar H2 production and mechanistic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  CAS  Google Scholar 

  2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  3. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801.

    Article  CAS  Google Scholar 

  4. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  5. Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    Article  CAS  Google Scholar 

  6. Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

    Article  CAS  Google Scholar 

  7. Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

    Article  CAS  Google Scholar 

  8. Shen, R. C.; Ren, D. D.; Ding, Y. N.; Guan, Y. T.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188.

    Article  CAS  Google Scholar 

  9. Yu, J. G.; Yu, Y. F.; Zhou, P.; Xiao, W.; Cheng, B. Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B: Environ. 2014, 156-157, 184–191.

    Article  Google Scholar 

  10. Li, Q.; Shi, T.; Li, X.; Lv, K. L.; Li, M.; Liu, F. L.; Li, H. Y.; Lei, M. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Appl. Catal. B: Environ. 2018, 229, 8–14.

    Article  CAS  Google Scholar 

  11. Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

    Article  CAS  Google Scholar 

  12. Yuan, J. L.; Wen, J. Q.; Gao, Q. Z.; Chen, S. C.; Li, J. M.; Li, X.; Fang, Y. P. Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans. 2015, 44, 1680–1689.

    Article  CAS  Google Scholar 

  13. Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927–10934.

    Article  CAS  Google Scholar 

  14. Wang, P.; Sheng, Y.; Wang, F. Z.; Yu, H. G. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Appl. Catal. B: Environ. 2018, 220, 561–569.

    Article  CAS  Google Scholar 

  15. Wang, H. M.; Naghadeh, S. B.; Li, C. H.; Ying, L.; Allen, A. L.; Zhang, J. Z. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci. China Mater. 2018, 61, 839–850.

    Article  CAS  Google Scholar 

  16. Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

    Article  CAS  Google Scholar 

  17. Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

    Article  Google Scholar 

  18. Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

    Article  CAS  Google Scholar 

  19. Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.; Wu, G. P.; Li, C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.

    Article  CAS  Google Scholar 

  20. Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

    Article  CAS  Google Scholar 

  21. Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y. X.; Kuno, M. Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal. 2015, 5, 6615–6623.

    Article  CAS  Google Scholar 

  22. Dong, Y. M.; Kong, L. G.; Wang, G. L.; Jiang, P. P.; Zhao, N.; Zhang, H. Z. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl. Catal. B: Environ. 2017, 211, 245–251.

    Article  CAS  Google Scholar 

  23. Yu, H. G.; Xu, J. C.; Gao, D. D.; Fan, J. J.; Yu, J. G. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci. China Mater. 2020, 63, 2215–2227.

    Article  CAS  Google Scholar 

  24. Deng, C. H.; Ye, F.; Wang, T.; Ling, X. H.; Peng, L. L.; Yu, H.; Ding, K. Z.; Hu, H. M.; Dong, Q.; Le, H. R. et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 2022, 15, 2003–2012.

    Article  CAS  Google Scholar 

  25. Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

    Article  Google Scholar 

  26. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  CAS  Google Scholar 

  27. Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

    Article  CAS  Google Scholar 

  28. Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

    Article  CAS  Google Scholar 

  29. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defectrich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    Article  CAS  Google Scholar 

  30. Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

    Article  Google Scholar 

  31. Bian, X. A.; Zhang, S.; Zhao, Y. X.; Shi, R.; Zhang, T. R. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat 2021, 3, 719–738.

    Article  CAS  Google Scholar 

  32. Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

    Article  CAS  Google Scholar 

  33. Silva, C. G.; Bouizi, Y.; Fornés, V.; García, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833–13839.

    Article  Google Scholar 

  34. Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S. J. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 2011, 133, 14998–15007.

    Article  CAS  Google Scholar 

  35. Gunjakar, J. L.; Kim, I. Y.; Lee, J. M.; Lee, N. S.; Hwang, S. J. Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: An effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation. Energy Environ. Sci. 2013, 6, 1008–1017.

    Article  CAS  Google Scholar 

  36. Dou, Y. B.; Zhang, S. T.; Pan, T.; Xu, S. M.; Zhou, A.; Pu, M.; Yan, H.; Han, J. B.; Wei, M.; Evans, D. G. et al. TiO2@layered double hydroxide core—shell nanospheres with largely enhanced photocatalytic activity toward O2 generation. Adv. Funct. Mater. 2015, 25, 2243–2249.

    Article  CAS  Google Scholar 

  37. Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.

    Article  CAS  Google Scholar 

  38. Zhang, J.; Qiao, S. Z.; Qi, L. F.; Yu, J. G. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 2013, 15, 12088–12094.

    Article  CAS  Google Scholar 

  39. Roussel, H.; Briois, V.; Elkaim, E.; De Roy, A.; Besse, J. P.; Jolivet, J. P. Study of the formation of the layered double hydroxide [Zn-Cr-Cl]. Chem. Mater. 2001, 13, 329–337.

    Article  CAS  Google Scholar 

  40. Luo, B.; Song, R.; Jing, D. W. ZnCr LDH nanosheets modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2017, 42, 23427–23436.

    Article  CAS  Google Scholar 

  41. Fu, Y.; Ning, F. Y.; Xu, S. M.; An, H. L.; Shao, M. F.; Wei, M. Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. J. Mater. Chem. A 2016, 4, 3907–3913.

    Article  CAS  Google Scholar 

  42. Wang, Y. B.; Wang, Y. S.; Xu, R. Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 2013, 117, 783–790.

    Article  CAS  Google Scholar 

  43. Wang, Z. Q.; Qi, Z. L.; Fan, X. J.; Leung, D. Y. C.; Long, J. L.; Zhang, Z. Z.; Miao, T. F.; Meng, S. G.; Chen, S. F.; Fu, X. L. Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers. Appl. Catal. B: Environ. 2021, 281, 119443.

    Article  CAS  Google Scholar 

  44. Mancipe, S.; Tzompantzi, F.; Gómez, R. Synthesis of CdS/MgAl layered double hydroxides for hydrogen production from methanol-water decomposition. Appl. Clay Sci. 2017, 136, 67–74.

    Article  CAS  Google Scholar 

  45. Lee, J. M.; Gunjakar, J. L.; Ham, Y.; Kim, I. Y.; Domen, K.; Hwang, S. J. A linker-mediated self-assembly method to couple isocharged nanostructures: Layered double hydroxide-CdS nanohybrids with high activity for visible-light-induced H2 generation. Chem. -Eur. J. 2014, 20, 17004–17010.

    Article  CAS  Google Scholar 

  46. Zhang, G. H.; Lin, B. Z.; Yang, W. W.; Jiang, S. F.; Yao, Q. R.; Chen, Y. L.; Gao, B. F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Adv. 2015, 5, 5823–5829.

    Article  CAS  Google Scholar 

  47. Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L. et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B: Environ. 2019, 254, 145–155.

    Article  CAS  Google Scholar 

  48. Zhou, H. L.; Song, Y. X.; Liu, Y. C.; Li, H. D.; Li, W. J.; Chang, Z. D. Fabrication of CdS/Ni-Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution. Int. J. Hydrogen Energy 2018, 43, 14328–14336.

    Article  CAS  Google Scholar 

  49. Yang, M. X.; Wang, K.; Jin, Z. L. Pyramidal CdS polyhedron modified with NiAl LDH to form S-scheme heterojunction for efficient photocatalytic hydrogen evolution. ChemCatChem 2021, 13, 3525–3535.

    Article  CAS  Google Scholar 

  50. Yang, M. X.; Wang, K.; Li, Y. B.; Yang, K. C.; Jin, Z. L. Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 548, 149212.

    Article  CAS  Google Scholar 

  51. Lee, H.; Reddy, D. A.; Kim, Y.; Chun, S. Y.; Ma, R.; Kumar, D. P.; Song, J. K.; Kim, T. K. Drastic improvement of 1D-CdS solar-driven photocatalytic hydrogen evolution rate by integrating with NiFe layered double hydroxide nanosheets synthesized by liquid-phase pulsed-laser ablation. ACS Sustainable Chem. Eng. 2018, 6, 16734–16743.

    Article  CAS  Google Scholar 

  52. Soldat, J.; Busser, G. W.; Muhler, M.; Wark, M. Cr2O3 nanoparticles on Ba5Ta4O15 as a noble-metal-free oxygen evolution co-catalyst for photocatalytic overall water splitting. ChemCatChem 2016, 8, 153–156.

    Article  CAS  Google Scholar 

  53. Zhao, Y. F.; Zhang, S. T.; Li, B.; Yan, H.; He, S.; Tian, L.; Shi, W. Y.; Ma, J.; Wei, M.; Evans, D. G. et al. A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix. Chem. -Eur. J. 2011, 17, 13175–13181.

    Article  CAS  Google Scholar 

  54. Cheon, J. Y.; Kim, J. H.; Kim, J. H.; Goddeti, K. C.; Park, J. Y.; Joo, S. H. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 2014, 136, 8875–8878.

    Article  CAS  Google Scholar 

  55. Fu, L.; Zhou, J.; Zhou, L. K.; Yang, J. M.; Liu, Z. R.; Wu, K.; Zhao, H. F.; Wang, J. K.; Wu, K. Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129422.

    Article  CAS  Google Scholar 

  56. Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

    Article  CAS  Google Scholar 

  57. Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118382.

    Article  CAS  Google Scholar 

  58. Wang, C.; Ma, B.; Xu, S. M.; Li, D. P.; He, S.; Zhao, Y. F.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. Visible-light-driven overall water splitting with a largely-enhanced efficiency over a Cu2O@ZnCr-layered double hydroxide photocatalyst. Nano Energy 2017, 32, 463–469.

    Article  CAS  Google Scholar 

  59. Xia, S. J.; Qian, M. D.; Zhou, X. B.; Meng, Y.; Xue, J. L.; Ni, Z. M. Theoretical and experimental investigation into the photocatalytic degradation of hexachlorobenzene by ZnCr layered double hydroxides with different anions. Mol. Catal. 2017, 435, 118–127.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB1502000), the National Natural Science Foundation of China (Nos, 62074123 and 52106270), the PetroChina Innovation Foundation (No. 2019D-5007-0410), the Young Talent Support Plan of Xi’an Jiaotong University (No. 7121191202), the Natural Science Foundation of Shaanxi Province (No. 2021JQ-040), and the China Postdoctoral Science Foundation (No. 2020M683472).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxin Zhao or Dengwei Jing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Li, J., Wang, W. et al. Boosting photocatalytic hydrogen production via interfacial engineering over a Z-scheme core/shell heterojunction. Nano Res. 16, 352–359 (2023). https://doi.org/10.1007/s12274-022-4825-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4825-1

Keywords

Navigation