Skip to main content

Strategic Design of Heterojunction CdS Photocatalysts for Solar Hydrogen

  • Chapter
  • First Online:
Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Abstract

A number of photocatalytic semiconductors that can produce hydrogen from water via sunlight or visible light are known. Among them, CdS may be the most appropriate because of its narrow bandgap (~2.5 eV) and suitable conduction band (−0.75 V vs. NHE) and valence band (+1.75 V vs. NHE) levels. Although photocorrosion still limits its widespread applicability, CdS is very useful as a model semiconductor for producing solar hydrogen. To improve the photocatalytic activity of CdS, charge separation and charge injection should be simultaneously considered. The simplest and most effective way to enhance charge separation is to couple with noncorrosive, wide bandgap oxide semiconductors such as TiO2. TiO2 plays a dual role in hybrids as it supports CdS and prevents its aggregation and enhances charge separation by forming a potential gradient at the interface of CdS and TiO2. Importantly, the morphologies of CdS and/or TiO2 greatly influence the overall photocatalytic activity of the hybrids. This chapter will briefly describe the importance of the hybrid configuration in terms of charge separation and morphological effects will be discussed in detail (e.g., CdS bulk/TiO2 nanoparticles, CdS nanoparticles/TiO2 bulk, CdS nanoparticles/TiO2 nanosheets, and CdS nanowires/TiO2 nanoparticles). Charge injection can also be improved by coupling with hydrogen-evolution catalysts (e.g., Pt-group metals). Pt nanoparticles are often deposited on CdS or CdS/TiO2. However, the effects of Pt are diverse and often contradictory. The inconsistencies are most likely related to chemical interactions at the CdS/Pt interface. Instead of expensive Pt-group metals, inexpensive carbon-based materials such as carbon blacks, activated carbons (AC), carbon nanofibers, single- and multiwalled carbon nanotubes, graphite, graphite oxides, and reduced graphene oxides can be utilized. Carbon-based materials are very attractive because of their unique physicochemical properties such as thermal conductivity, electrical resistivity, BET surface area, and sp valence hybrid configuration. Nevertheless, the following questions still remain: Which physicochemical property of carbon-based materials is the primary factor in the catalysis of solar hydrogen in water? Why do carbon-based materials show different catalytic effects? To what extent can the carbon-based materials enhance the production of solar hydrogen? This contribution will address these questions and discuss the diverse effects of carbon-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Grimes, O.K. Varghese, S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis (Springer, New York, 2008).

    Google Scholar 

  2. K. Rajeshwar, R. McConnell, S. Licht, Solar Hydrogen Generation: Toward a Renewable Energy Future (Springer, New York, 2008).

    Google Scholar 

  3. L. Vayssieres, On Solar Hydrogen & Nanotechnology (Wiley, Singapore, 2009).

    Google Scholar 

  4. R. van de Krol, M. Gratzel, Photoelectrochemical Solar Hydrogen (Springer, New York, 2012).

    Google Scholar 

  5. H. Park, C.D. Vecitis, W. Choi, O. Weres, M.R. Hoffmann, Solar-powered production of molecular hydrogen from water, J. Phys. Chem. C 112, 885-889 (2008).

    CAS  Google Scholar 

  6. H. Park, C.D. Vecitis, M.R. Hoffmann, Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen, J. Phys. Chem. A 112, 7616-7626 (2008).

    CAS  Google Scholar 

  7. H. Park, C.D. Vecitis, M.R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: The role of active chlorine species, J. Phys. Chem. C 113, 7935-7945 (2009).

    CAS  Google Scholar 

  8. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A. 103, 15729-15735 (2006).

    CAS  Google Scholar 

  9. A. Kudo, Development of photocatalyst materials for water splitting with the aim at photon energy conversion, J. Ceram. Soc. Jpn. 109, S81-S88 (2001).

    CAS  Google Scholar 

  10. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting, Sol. Energy 78, 581-592 (2005).

    CAS  Google Scholar 

  11. Y.H. Yang, Q.Y. Chen, Z.L. Yin, J. Li, Progress in research of photocatalytic water splitting, Prog. Chem. 17, 631-642 (2005).

    CAS  Google Scholar 

  12. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energ. Rev. 11, 401-425 (2007).

    CAS  Google Scholar 

  13. M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy Environ. Sci. 2, 1231-1257 (2009).

    CAS  Google Scholar 

  14. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 253-278 (2009).

    CAS  Google Scholar 

  15. R.M.N. Yerga, M.C.A. Galvan, F. del Valle, J.A.V. de la Mano, J.L.G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem 2, 471-485 (2009).

    Google Scholar 

  16. W.J. Youngblood, S.H.A. Lee, K. Maeda, T.E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors, Accounts Chem. Res. 42, 1966-1973 (2009).

    CAS  Google Scholar 

  17. J.F. Zhu, M. Zach, Nanostructured materials for photocatalytic hydrogen production, Curr. Opin. Colloid Interface Sci. 14, 260-269 (2009).

    CAS  Google Scholar 

  18. R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. Photobiol. C 11, 179-209 (2010).

    Google Scholar 

  19. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110, 6503-6570 (2010).

    CAS  Google Scholar 

  20. P.F. Ji, M. Takeuchi, T.M. Cuong, J.L. Zhang, M. Matsuoka, M. Anpo, Recent advances in visible light-responsive titanium oxide-based photocatalysts, Res. Chem. Intermed. 36, 327-347 (2010).

    CAS  Google Scholar 

  21. D.Y.C. Leung, X.L. Fu, C.F. Wang, M. Ni, M.K.H. Leung, X.X. Wang, X.Z. Fu, Hydrogen production over titania-based photocatalysts, ChemSusChem 3, 681-694 (2010).

    CAS  Google Scholar 

  22. Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials, Laser Photon. Rev. 4, 517-528 (2010).

    CAS  Google Scholar 

  23. R.M. Navarro, M.C. Alvarez-Galvan, J.A.V. de la Mano, S.M. Al-Zahrani, J.L.G. Fierro, A framework for visible-light water splitting, Energy Environ. Sci. 3, 1865-1882 (2010).

    CAS  Google Scholar 

  24. M. Cargnello, A. Gasparotto, V. Gombac, T. Montini, D. Barreca, P. Fornasiero, Photocatalytic H2 and added-value by-products. The role of metal oxide systems in their synthesis from oxygenates, Eur. J. Inorg. Chem. 4309-4323 (2011).

    Google Scholar 

  25. M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66, 185-297 (2011).

    CAS  Google Scholar 

  26. K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, J. Photochem. Photobiol. C 12, 237-268 (2011).

    CAS  Google Scholar 

  27. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B 125, 331-349 (2012).

    CAS  Google Scholar 

  28. J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic photocatalysts for overall water splitting, Chem. Asian J. 7, 642-657 (2012).

    CAS  Google Scholar 

  29. N. Zhang, Y.H. Zhang, Y.J. Xu, Recent progress on graphene-based photocatalysts: Current status and future perspectives, Nanoscale 4, 5792-5813 (2012).

    CAS  Google Scholar 

  30. Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Sci. 6, 347-370 (2013).

    CAS  Google Scholar 

  31. K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3, 1486-1503 (2013).

    CAS  Google Scholar 

  32. Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation, Coord. Chem. Rev. 257, 1957-1969 (2013).

    CAS  Google Scholar 

  33. V. Preethi, S. Kanmni, Photocatalytic hydrogen production, Mater. Sci. Semicond. Process 16, 561-575 (2013).

    CAS  Google Scholar 

  34. S. Rawalekar, T. Mokari, Rational design of hybrid nanostructures for advanced photocatalysis, Adv. Energy Mater. 3, 12-27 (2013).

    CAS  Google Scholar 

  35. Y.J. Wang, Q.S. Wang, X.Y. Zhan, F.M. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review, Nanoscale 5, 8326-8339 (2013).

    CAS  Google Scholar 

  36. J.H. Yang, D.G. Wang, H.X. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Accounts Chem. Res. 46, 1900-1909 (2013).

    CAS  Google Scholar 

  37. N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  38. H. Park, A. Bak, Y.Y. Ahn, J. Choi, M.R. Hoffmann, Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water, J. Hazard. Mater. 211-212, 47-54 (2012).

    CAS  Google Scholar 

  39. H. Park, A. Bak, T.H. Jeon, S. Kim, W. Choi, Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes, Appl. Catal. B 115-116, 74-80 (2012).

    CAS  Google Scholar 

  40. K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett. 1, 2655-2661 (2010).

    CAS  Google Scholar 

  41. H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C 15, 1-20 (2013).

    CAS  Google Scholar 

  42. K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water - Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight, Nature 440, 295-295 (2006).

    CAS  Google Scholar 

  43. J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting, Catal. Today 185, 270-277 (2012).

    CAS  Google Scholar 

  44. S. Sato, J.M. White, Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2, J. Catal. 69, 128-139 (1981).

    CAS  Google Scholar 

  45. K. Sayama, H. Arakawa, Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis, J. Photochem. Photobiol. A 77, 243-247 (1994).

    CAS  Google Scholar 

  46. S. Tabata, N. Nishida, Y. Masaki, K. Tabata, Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system, Catal. Lett. 34, 245-249 (1995).

    CAS  Google Scholar 

  47. J.P. Lehn, J.P. Sauvage, R. Ziessel, Photochemical water splitting. Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv. J. Chim. 4, 623-627 (1980).

    CAS  Google Scholar 

  48. A. Kudo, Development of photocatalyst materials for water splitting, Int. J. Hydrogen Energy 31, 197-202 (2006).

    CAS  Google Scholar 

  49. K. Yamaguchi, S. Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc. Faraday Trans. 81, 1237-1246 (1985).

    Google Scholar 

  50. K. Domen, N. Saito, S. Soma, M. Onishi, K. Tamura, Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, Chem. Commun. 12, 543-544 (1980).

    Google Scholar 

  51. T. Kawai, T. Sakata, Photocatalytic decomposition of gaseous water over TiO2 and TiO2-RuO2 surfaces, Chem. Phys. Lett. 72, 87-89 (1980).

    CAS  Google Scholar 

  52. S. Sato, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conditions on activity, J. Phys. Chem. B 107, 7965-7969 (2003).

    CAS  Google Scholar 

  53. K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue, K. Domen, Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting, J. Phys. Chem. B 109, 21915-21921 (2005).

    CAS  Google Scholar 

  54. A. Iwase, H. Kato, A. Kudo, A novel photodeposition method in the presence of nitrate ions for loading of an iridium oxide cocatalyst for water splitting, Chem. Lett. 34, 946-947 (2005).

    CAS  Google Scholar 

  55. S.A. Naman, S.M. Ahwi, K.A. Emara, Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with RuO2, Int. J. Hydrogen Energy 11, 33-38 (1986).

    CAS  Google Scholar 

  56. J. Choi, S.Y. Ryu, W. Balcerski, T.K. Lee, M.R. Hoffmann, Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light, J. Mater. Chem. 18, 2371-2378 (2008).

    CAS  Google Scholar 

  57. J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang, J.S. Lee, Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, Int. J. Hydrogen Energy 33, 5975-5980 (2008).

    CAS  Google Scholar 

  58. S.Y. Ryu, W. Balcerski, T.K. Lee, M.R. Hoffmann, Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas, J. Phys. Chem. C 111, 18195-18203 (2007).

    CAS  Google Scholar 

  59. S.Y. Ryu, J. Choi, W. Balcerski, T.K. Lee, M.R. Hoffmann, Photocatalytic production of H2 on nanocomposite catalysts, Ind. Eng. Chem. Res. 46, 7476-7488 (2007).

    CAS  Google Scholar 

  60. Y.K. Kim, H. Park, Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water, Energy Environ. Sci. 4, 685-694 (2011)

    CAS  Google Scholar 

  61. H. Park, W. Choi, M.R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, J. Mater. Chem. 18, 2379-2385 (2008).

    CAS  Google Scholar 

  62. H. Park, Y.K. Kim, W. Choi, Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light, J. Phys. Chem. C 115, 6141-6148 (2011).

    CAS  Google Scholar 

  63. P. Brown, P.V. Kamat, Electrophoretic deposition of CdSe − C60 composite films and capture of photogenerated electrons with nC60 cluster shell, J. Am. Chem. Soc. 130, 8890-8891 (2008).

    CAS  Google Scholar 

  64. M. Ranjbar, S.M. Mahdavi, A.I. Zad, Pulsed laser deposition of W–V–O composite films: Preparation, characterization and gasochromic studies, Sol. Energy Mater. Sol. Cells 92, 878-883 (2008).

    CAS  Google Scholar 

  65. D.G. Wang, Z.G. Zou, J. Ye, Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors, Chem. Mater. 17, 3255-3261 (2005).

    CAS  Google Scholar 

  66. H.G. Kim, P.H. Borse, W. Choi, J.S. Lee, Photocatalytic nanodiodes for visible-light photocatalysis, Angew. Chem. Int. Edit. 44, 4585-4589 (2005).

    CAS  Google Scholar 

  67. J.S. Jang, W. Li, S.H. Oh, J.S. Lee, Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light, Chem. Phys. Lett. 425, 278-282 (2006).

    CAS  Google Scholar 

  68. T. Kida, G. Guan, N. Yamada, T. Ma, K. Kimura, A. Yoshida, Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation, Int. J. Hydrogen Energy 29, 269-274 (2004).

    CAS  Google Scholar 

  69. K.S. Leshkies, R. Duvakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Lett. 7, 1793-1798 (2005).

    Google Scholar 

  70. J.S. Jang, H.G. Kim, P.H. Borse, J.S. Lee, Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation, Int. J. Hydrogen Energy 32, 4786-4791 (2007).

    CAS  Google Scholar 

  71. H.G. Kim, E.D. Jeong, P.H. Borse, S. Jeon, K. Yong, J.S. Lee, Photocatalytic ohmic layered nanocomposite for efficient utilization of visible light photons, Appl. Phys. Lett. 89, 64101-64103 (2006).

    Google Scholar 

  72. D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures, Adv. Funct. Mater. 19, 805-811 (2009).

    CAS  Google Scholar 

  73. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS, Chem. Mater. 20, 6784-6791 (2008).

    CAS  Google Scholar 

  74. Y.J. Chi, H.G. Fu, L.H. Qi, K.Y. Shi, H.B. Zhang, H.T. Yu, Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films, J. Photochem. Photobiol. A. 195, 357-363 (2008).

    CAS  Google Scholar 

  75. J.C. Kim, J. Choi, Y.B. Lee, J.H. Hong, J.I. Lee, J.W. Yang, W.I. Lee, N.H. Hur, Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles, Chem. Commun. 5024-5026 (2006).

    Google Scholar 

  76. A. Kumar, A.K. Jain, Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors - Photocatalytic oxidation of indole, J. Mol. Catal. A 165, 265-273 (2001).

    CAS  Google Scholar 

  77. C.J. Lin, Y.H. Yu, Y.H. Liou, Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts, Appl. Catal. B 93, 119-125 (2009).

    CAS  Google Scholar 

  78. J.C. Lee, T.G. Kim, W. Lee, S.H. Han, Y.M. Sung, Growth of CdS nanorod-coated TiO2 nanowires on conductive glass for photovoltaic applications, Cryst. Growth Des. 9, 4519-4523 (2009).

    CAS  Google Scholar 

  79. W.W. So, K.J. Kim, S.J. Moon, Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4, Int. J. Hydrogen Energy 29, 229-234 (2004).

    CAS  Google Scholar 

  80. S. Kim, H. Park, Sunlight-harnessing and storing heterojunction TiO2/Al2O3/WO3 electrodes for nighttime applications, RSC Adv. 3, 17551-17558 (2013).

    CAS  Google Scholar 

  81. G.M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation, Nano Letters 10, 1088-1092 (2010).

    CAS  Google Scholar 

  82. S.T. Martin, H. Herrmann, W.Y. Choi, M.R. Hoffmann, Time-resolved microwave conductivity. 1. TiO2 photoreactivity and size quantization, J. Chem. Soc. Farad. Trans. 90, 3315-3322 (1994).

    Google Scholar 

  83. H.M. Zhu, B.F. Yang, J. Xu, Z.P. Fu, M.W. Wen, T. Guo, S.Q. Fu, J. Zuo, S.Y. Zhang, Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity, Appl. Catal. B 90, 463-469 (2009).

    CAS  Google Scholar 

  84. H. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer, J. Phys. Chem. C 115, 9797-9805 (2011).

    CAS  Google Scholar 

  85. Y.K. Kim, H. Park, How and to what extent do carbon materials catalyze solar hydrogen production from water? Appl. Catal. B 125, 530-537 (2012).

    CAS  Google Scholar 

  86. S.V. Tambwekar, D. Venugopal, M. Subrahmanyam, H2 production of (CdS-ZnS)-TiO2 supported photocatalytic system, Int. J. Hydrogen Energy 24, 957-963 (1999).

    CAS  Google Scholar 

  87. D.X. Shi, Y.Q. Feng, S.H. Zhong, Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS-TiO2/SiO2 catalyst, Catal. Today 98, 505-509 (2004).

    CAS  Google Scholar 

  88. C.Y. Wang, H.M. Shang, T. Ying, T.S. Yuan, G.W. Zhang, Properties and morphology of CdS compounded TiO2 visible-light photocatalytic nanofilms coated on glass surface, Sep. Purif. Technol. 32, 357-362 (2003).

    CAS  Google Scholar 

  89. A. Kumar, A.K. Jain, Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS-TiO2, J. Photochem. Photobiol. A 156, 207-218 (2003).

    CAS  Google Scholar 

  90. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, J. Photochem. Photobiol. A 183, 218-224 (2006).

    CAS  Google Scholar 

  91. H.B. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Enhanced photocatalytic dechlorination of 1,2,3,4-tetrachlorobenzene using nanosized CdS/TiO2 hybrid photocatalyst under visible light irradiation, Chem. Lett. 334-335 (2001).

    Google Scholar 

  92. P.A. Sant, P.V. Kamat, Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters, Phys. Chem. Chem. Phys. 4, 198-203 (2002).

    CAS  Google Scholar 

  93. H. Matsumoto, T. Matsunaga, T. Sakata, H. Mori, H. Yoneyama, Size dependent fluorescence quenching of CdS nanocrystals caused by TiO2 colloids as a potential-variable quencher, Langmuir 11, 4283-4287 (1995).

    CAS  Google Scholar 

  94. N. Chandrasekharan, P.V. Kamat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles, J. Phys. Chem. B 104, 10851-10857 (2000).

    CAS  Google Scholar 

  95. M. Jacob, H. Levanon, P.V. Kamat, Charge distribution between UV-irradiated TiO2 and gold, Nano Lett. 3, 353-358 (2003).

    Google Scholar 

  96. V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites, J. Am. Chem. Soc. 126, 4943-4950 (2004).

    CAS  Google Scholar 

  97. K. Vinodgopal, I. Bedja, P.V. Kamat, Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye, Chem. Mater. 8, 2180-2187 (1996).

    CAS  Google Scholar 

  98. G. Khan, S.K. Choi, S. Kim, S.K. Lim, J.S. Jang, H. Park, Carbon nanotubes as an auxiliary catalyst in heterojunction photocatalysis for solar hydrogen, Appl. Catal. B 142-143, 647-653 (2013).

    CAS  Google Scholar 

  99. G. Khan, Y.K. Kim, S.K. Choi, D.S. Han, A. Abdel-Wahab, H. Park, Evaluating the catalytic effects of carbon materials on the photocatalytic reduction and oxidation reactions of TiO2, Bull. Kor. Chem. Soc. 34, 1137-1144 (2013).

    CAS  Google Scholar 

  100. H. Kisch, H. Weiss, Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor-support interaction, Adv. Funct. Mater. 12, 483-488 (2002).

    CAS  Google Scholar 

  101. H. Weib, A. Fernandez, H. Kisch, Electronic semiconductor–support interaction. A novel effect in semiconductor photocatalysis, Angew. Chem. Int. Edit. 40, 3825-3827 (2001).

    Google Scholar 

  102. M. Barbeni, E. Pelizzetti, E. Borgarello, N. Serpone, M. Gratzel, L. Balducci, M. Visca, Hydrogen from hydrogen-sulfide cleavage - Improved efficiencies via modification of semiconductor particles, Int. J. Hydrogen Energy 10, 249-253 (1985).

    CAS  Google Scholar 

  103. C.A. Linkous, N.Z. Muradov, S.N. Ramser, Consideration of reactor design for solar hydrogen production from hydrogen sulfide using semiconductor particulates, Int. J. Hydrogen Energy 20, 701-709 (1995).

    CAS  Google Scholar 

  104. L.R. Grzyll, J.J. Thomas, R.G. Barile, Photoelectrochemical conversion of hydrogen sulfide to hydrogen using artificial light and solar radiation. Int. J. Hydrogen Energy 14, 647-651 (1989).

    CAS  Google Scholar 

  105. N. Buhler, K. Meier, J.F. Reber, Photochemical hydrogen production with CdS suspensions, J. Phys. Chem. 88, 3261-3268 (1984).

    Google Scholar 

  106. J.S. Jang, S.H. Choi, H. Park, W. Choi, J.S. Lee, A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets, J. Nanosci. Nanotechnol. 6, 3642-3646 (2006).

    CAS  Google Scholar 

  107. M.K. Arora, N. Sahu, S.N. Upadhyay, A.S.K. Sinha, Activity of cadmium sulfide photocatalysts for hydrogen production from water: Role of support, Ind. Eng. Chem. Res. 38, 2659-2665 (1999).

    CAS  Google Scholar 

  108. J.F. Reber, M. Rusek, Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide, J. Phys. Chem. 90, 824-834 (1986).

    CAS  Google Scholar 

  109. M. Matsumura, S. Furukawa, Y. Saho, H. Tsubomura, Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: Effect of crystal structure and preparation method of the catalyst, J. Phys. Chem. 89, 1327-1329 (1985).

    CAS  Google Scholar 

  110. Z.S. Jin, Z.S. Chen, Q.L. Li, C.J. Xi, X.H. Zheng, On the conditions and mechanism of PtO2 formation in the photoinduced conversion of H2PtCl6, J. Photochem. Photobiol. A 81, 177-182 (1994).

    CAS  Google Scholar 

  111. Z.S. Jin, Q.L. Li, L.B. Feng, Z.S. Chen, X.H. Zheng, C.J. Xi, Investigation of the functions of CdS surface composite layer and Pt on treated Pt/CdS for photocatalytic dehydrogenation of aqueous alcohol solutions, J. Mol. Catal. 50, 315-332 (1989).

    CAS  Google Scholar 

  112. M.C. Guindo, L. Zurita, J.D.G. Duran, A.V. Delgado, Electrokinetic behavior of spherical colloidal particles of cadmium sulfide, Mater. Chem. Phys. 44, 51-58 (1996).

    CAS  Google Scholar 

  113. T. Inoue, T. Watanabe, A. Fujishima, K. Honda, Investigation of CdS photoanode reaction in the electrolyte solution containing sulfide ion, Bull. Chem. Soc. Jpn. 52, 1243-1250 (1979).

    CAS  Google Scholar 

  114. Q.L. Li, Z.S. Chen, X.H. Zheng, Z.S. Jin, Study of photoreduction of hexachloroplatinate on cadmium sulfide, J. Phys. Chem. 96, 5959-5962 (1992).

    CAS  Google Scholar 

  115. M. Matsumura, M. Hiramoto, T. Iehara, H. Tsubomura, Photocatalytic and photoelectrochemical reactions of aqueous solutions of formic acid, formaldehyde, and methanol on platinized cadmium sulfide powder and at a cadmium sulfide electrode, J. Phys. Chem. 88, 248-250 (1984).

    CAS  Google Scholar 

  116. T. Watanabe, Fujishim.A, K.I. Honda, Potential variation at semiconductor-electrolyte interface through a chance in pH of solution, Chem. Lett. 897-900 (1974).

    Google Scholar 

  117. Z.S. Jin, Q.L. Li, X.H. Zheng, C.J. Xi, C.P. Wang, H.Q. Zhang, L.B. Feng, H.Q. Wang, Z.S. Chen, Z.C. Jiang, Surface properties of Pt/CdS and mechanism of photocatalytic dehydrogenation of aqueous alcohol, J. Photochem. Photobiol. A 71, 85-96 (1993).

    CAS  Google Scholar 

  118. L. Borrell, S. Cerveramarch, J. Gimenez, R. Simarro, J.M. Andujar, A comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production from sulphide + sulphite substrates, Sol. Energy Mater. Sol. Cells 25, 25-39 (1992).

    CAS  Google Scholar 

  119. A. Mills, G. Williams, Photosensitized oxidation of water by CdS-based suspensions, J. Chem. Soc. Farad. Trans. 85, 503-519 (1989).

    CAS  Google Scholar 

  120. J. Sabate, S. Cerveramarch, R. Simarro, J. Gimenez, A comparative study of semiconductor photocatalysts for hydrogen production by visible light using different sacrificial substrates in aqueous media, Int. J. Hydrogen Energy 15, 115-124 (1990).

    CAS  Google Scholar 

  121. N. Serpone, E. Borgarello, M. Gratzel, Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; Improved efficiency through inter-particle electron transfer, J. Chem. Soc. Chem. Commun. 342-344 (1984).

    Google Scholar 

  122. A. Sobczynski, A.J. Bard, A. Campion, M.A. Fox, T. Mallouk, S.E. Webber, J.M. White, Photoassisted hydrogen generation - Pt and CdS supported on separate particles, J. Phys. Chem. 91, 3316-3320 (1987).

    CAS  Google Scholar 

  123. H. Harada, T. Sakata, T. Ueda, Effect of semiconductor on photocatalytic decomposition of lactic acid, J. Am. Chem. Soc. 107, 1773-1774 (1985).

    CAS  Google Scholar 

  124. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2, Nature Mater. 5, 782-786 (2006).

    CAS  Google Scholar 

  125. L. Spanhel, H. Weller, A. Henglein, Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles, J. Am. Chem. Soc. 109, 6632-6635 (1987).

    CAS  Google Scholar 

  126. L. Wu, J.C. Yu, X.Z. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal. A 244, 25-32 (2006).

    CAS  Google Scholar 

  127. J.S. Jang, S.H. Choi, H.G. Kim, J.S. Lee, Location and state of Pt in platinized CdS/TiO2, J. Phys. Chem. C 112, 17200-17205 (2008).

    CAS  Google Scholar 

  128. J.S. Lee, S. Locatelli, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts 3. Turnover rates for the hydrogenolysis of n-butane, J. Catal. 125, 157-170 (1990).

    CAS  Google Scholar 

  129. J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts: I. Synthesis of unsupported powders, J. Catal. 106, 125-133 (1987).

    CAS  Google Scholar 

  130. R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science 181, 547-549 (1973).

    CAS  Google Scholar 

  131. J.S. Lee, M. Boudart, In situ carburization of metallic molybdenum during catalytic reactions of carbon-containing gases, Catal. Lett. 20, 97-106 (1993).

    CAS  Google Scholar 

  132. C.J. Barnett, G.T. Burstein, A.R.J. Kucernak, K.R. Williams, Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds, Electrochim. Acta 42, 2381-2388 (1997).

    CAS  Google Scholar 

  133. S. Bodoardo, M. Maja, N. Penazzi, F.E.G. Henn, Oxidation of hydrogen on WC at low temperature, Electrochim. Acta 42, 2603-2609 (1997).

    CAS  Google Scholar 

  134. M.B. Zeller, J.G. Chen, Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts, Catal. Today 99, 299-307 (2005).

    Google Scholar 

  135. D.R. McIntyre, G.T. Burstein, A. Vossen, Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide, J. Power Sources 107, 67-73 (2002).

    CAS  Google Scholar 

  136. R. Ganesan, J.S. Lee, Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation, Angew. Chem. Int. Edit. 44, 6557-6560 (2005).

    CAS  Google Scholar 

  137. R. Ganesan, D.J. Ham, J.S. Lee, Platinized mesoporous tungsten carbide for electrochemical methanol oxidation, Electrochem. Commun. 9, 2576-2579 (2007).

    CAS  Google Scholar 

  138. Y. Oosawa, Photocatalytic hydrogen evolution from an aqueous methanol solution over ceramics-electrocatalyst/TiO2, Chem. Lett. 12, 577-580 (1983).

    Google Scholar 

  139. J.S. Jang, D.J. Ham, N. Lakshminarasimhan, W. Choi, J.S. Lee, Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst, Appl. Catal. A 346, 149-154 (2008).

    CAS  Google Scholar 

  140. L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu, H.-Q. Yu, Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation, J. Phys. Chem. C 115, 11466-11473 (2011).

    CAS  Google Scholar 

  141. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc. 2011, 10878-10884 (2011).

    Google Scholar 

  142. Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, P.V. Kamat, To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 1, 2222-2227 (2010).

    CAS  Google Scholar 

  143. I. Robel, B.A. Bunker, P.V. Kamat, Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions, Adv. Mater. 17, 2458-2463 (2005).

    CAS  Google Scholar 

  144. H.W. Jeong, H. Park, Carbon-catalyzed dye sensitization for solar hydrogen production, Catal. Today 230, 15-19 (2014).

    CAS  Google Scholar 

  145. P. Serp, J.L. Figueiredo, Carbon Materials for Catalysis (Wiley, New Jersey, 2009).

    Google Scholar 

  146. T. Torimoto, Y. Okawa, N. Takeda, H. Yoneyama, Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane, J. Photochem. Photobiol. A 103, 153-157 (1997).

    CAS  Google Scholar 

  147. A. Modestov, V. Glezer, I. Marjasin, O. Lev, Photocatalytic degradation of chlorinated phenoxyacetic acids by a new buoyant titania-exfoliated graphite composite photocatalyst, J. Phys. Chem. B 101, 4623-4629 (1997).

    CAS  Google Scholar 

  148. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chagn, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water, Adv. Func. Mater. 20, 2255-2262 (2010).

    CAS  Google Scholar 

  149. L.-W. Zhang, H.-B. Fu, Y.-F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon, Adv. Func. Mater. 18, 2180-2189 (2008).

    CAS  Google Scholar 

  150. S. Kim, S.K. Lim, Preparation of TiO2-embedded carbon nanofibers, Appl. Catal. B 84, 16-20 (2008).

    CAS  Google Scholar 

  151. R. Yuan, J. Zheng, R. Guan, Y. Zhao, Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers, Colloid Surface A 254, 131-136 (2005).

    CAS  Google Scholar 

  152. A. Kongkanand, R.M. Dominguez, P.V. Kamat, Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons, Nano Lett. 7, 676-680 (2007).

    CAS  Google Scholar 

  153. L. Sheeney-Haj-Khia, B. Basnar, I. Willner, Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes, Angew. Chem. Int. Edit. 44, 78-83 (2005).

    Google Scholar 

  154. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites, Adv. Mater. 21, 2233-2239 (2009).

    CAS  Google Scholar 

  155. O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar, Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction, J. Phys. Chem. C 114, 12955-12959 (2010).

    CAS  Google Scholar 

  156. Y. Park, S.-H. Kang, W. Choi, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion, Phys. Chem. Chem. Phys. 13, 9425-9431 (2011).

    CAS  Google Scholar 

  157. N.J. Bell, H.N. Yun, A.J. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, J. Phys. Chem. C 115, 6004-6009 (2011).

    CAS  Google Scholar 

  158. W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, J. Phys. Chem. C 115, 10694-10701 (2011).

    CAS  Google Scholar 

  159. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10, 577-583 (2010).

    CAS  Google Scholar 

  160. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano 4, 380-386 (2010).

    CAS  Google Scholar 

  161. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4, 7303-7314 (2010).

    CAS  Google Scholar 

  162. K. Kondo, N. Murakami, C. Ye, T. Tsubota, T. Ohno, Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride, Appl. Catal. B 142-143, 362-367 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Basic Science Research Programs (Nos. 2012R1A2A2A01004517 and 2011-0021148), Framework of International Cooperation Program (No. 2013K2A1A2052901), and Korea Center for Artificial Photosynthesis (KCAP) (No. 2009-0093880) through the National Research Foundation (NRF), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jang, J.S., Park, H. (2014). Strategic Design of Heterojunction CdS Photocatalysts for Solar Hydrogen. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_1

Download citation

Publish with us

Policies and ethics