Skip to main content
Log in

Modularly engineered prodrug-nanoassemblies for cancer therapy: Nonpharmacological moiety dominating delivery fates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Self-engineered small-molecule prodrug-nanoassemblies have emerged as promising nanomedicines for cancer treatment. Modular design of prodrug molecules is crucial to guarantee the favorable assembly stability, tumor-specific prodrug activation, and satisfactory antitumor effect. However, too much attention has been paid to the pharmacophores and chemical linkages in prodrug molecules while neglects the vital roles of nonpharmacological moieties. Herein, we found that iso-carbon fatty acids with different number, position, and cis-trans configuration of double bonds dramatically affect the nanoassembly feature and drug delivery fates of thioether-linked paclitaxel prodrug-nanoassemblies. Particularly, the number and cis-trans configuration of double bonds in fatty acid moieties not only dominate the self-assembly ability and colloidal stability of prodrugs, but also exert significant influences on the pharmacokinetics, prodrug activation, and antitumor activity of prodrug-nanoassemblies. Finally, oleic acid with one cis double bond stands out as the optimal nonpharmacological moiety for thioether-linked paclitaxel prodrugnanoassemblies. This study elucidates the crucial roles of nonpharmacological moieties in prodrugs, and provides new insights into the modular design of prodrug-based nanomedicines for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, W.; Wang, Y. F.; Wargo, J. A.; Lang, F. F.; Kim, B. Y. S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 2021, 16, 6–15.

    Article  Google Scholar 

  2. Yang, F. J.; Zhao, Z. Q.; Sun, B. J.; Chen, Q.; Sun, J.; He, Z. G.; Luo, C. Nanotherapeutics for antimetastatic treatment. Trends Cancer 2020, 6, 645–659.

    Article  CAS  Google Scholar 

  3. Wang, J.; Li, Y. Y.; Nie, G. J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783.

    Article  CAS  Google Scholar 

  4. Xue, Y. E.; Che, J. Y.; Ji, X. M.; Li, Y. N.; Xie, J. B.; Chen, X. Y. Recent advances in biomaterial-boosted adoptive cell therapy. Chem. Soc. Rev. 2022, 51, 1766–1794.

    Article  CAS  Google Scholar 

  5. Zhou, Y.; Tong, F.; Gu, W. L.; He, S. Q.; Yang, X. T.; Li, J. M.; Gao, Y. D.; Gao, H. L. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm. Sin. B 2022, 12, 1416–1431.

    Article  CAS  Google Scholar 

  6. Jiang, X. Y.; Fitch, S.; Wang, C.; Wilson, C.; Li, J. F.; Grant, G. A.; Yang, F. Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery. Proc. Natl. Acad. Sci. USA 2016, 113, 13857–13862.

    Article  CAS  Google Scholar 

  7. Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

    Article  Google Scholar 

  8. Wang, Y. Q.; Luo, C.; Zhou, S.; Wang, X. H.; Zhang, X. B.; Li, S. M.; Zhang, S. W.; Wang, S.; Sun, B. J.; He, Z. G. et al. Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian J. Pharm. Sci. 2021, 16, 643–652.

    Article  Google Scholar 

  9. Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

    Article  CAS  Google Scholar 

  10. Khalifa, A. M.; Elsheikh, M. A.; Khalifa, A. M.; Elnaggar, Y. S. R. Current strategies for different paclitaxel-loaded nano-delivery systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release 2019, 311–312, 125–137.

    Article  Google Scholar 

  11. Wang, Y. Q.; Li, S. M.; Wang, X. H.; Chen, Q.; He, Z. G.; Luo, C.; Sun, J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021, 271, 120737.

    Article  CAS  Google Scholar 

  12. Qin, Y.; Guo, Q.; Wu, S. J.; Huang, C. L.; Zhang, Z. M.; Zhang, L.; Zhang, L. H.; Zhu, D. W. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma. Chin. Chem. Lett. 2020, 31, 3121–3126.

    Article  CAS  Google Scholar 

  13. Zhang, T.; Xiong, H. G.; Ma, X. B.; Gao, Y.; Xue, P.; Kang, Y. J.; Sun, Z. J.; Xu, Z. G. Supramolecular tadalafil nanovaccine for cancer immunotherapy by alleviating myeloid-derived suppressor cells and heightening immunogenicity. Small Methods 2021, 5, 2100115.

    Article  CAS  Google Scholar 

  14. Stater, E. P.; Sonay, A. Y.; Hart, C.; Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194.

    Article  CAS  Google Scholar 

  15. Peng, S. J.; Xiao, F. F.; Chen, M. W.; Gao, H. L. Tumormicroenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 2022, 9, 2103836.

    Article  CAS  Google Scholar 

  16. Zhang, J.; Chen, C.; Li, A. N.; Jing, W. Q.; Sun, P.; Huang, X. Y.; Liu, Y. C.; Zhang, S. C.; Du, W.; Zhang, R. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548.

    Article  CAS  Google Scholar 

  17. Liu, J.; Chen, C.; Wei, T.; Gayet, O.; Loncle, C.; Borge, L.; Dusetti, N.; Ma, X. W.; Marson, D.; Laurini, E. et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021, 1, 21–34.

    Article  Google Scholar 

  18. Huang, H.; Dong, C. H.; Chang, M. Q.; Ding, L.; Chen, L.; Feng, W.; Chen, Y. Mitochondria-specific nanocatalysts for chemotherapy-augmented sequential chemoreactive tumor therapy. Exploration 2021, 1, 50–60.

    Article  Google Scholar 

  19. Wang, J. Y.; Wang, H.; Cui, H. Y.; Sun, P.; Yang, X.; Chen, Q. X. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chin. Chem. Lett. 2020, 31, 3143–3148.

    Article  CAS  Google Scholar 

  20. Zhang, X. B.; Xiong, J. C.; Wang, K. Y.; Yu, H.; Sun, B. J.; Ye, H.; Zhao, Z. Q.; Wang, N.; Wang, Y. Q.; Zhang, S. W. et al. Erythrocyte membrane-camouflaged carrier-free nanoassembly of FRET photosensitizer pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy. Bioact. Mater. 2021, 6, 2291–2302.

    Article  CAS  Google Scholar 

  21. Yang, K. K.; Yang, Z. Q.; Yu, G. C.; Nie, Z. H.; Wang, R. B.; Chen, X. Y. Polyprodrug nanomedicines: An emerging paradigm for cancer therapy. Adv. Mater. 2022, 34, 2107434.

    Article  CAS  Google Scholar 

  22. Zhang, S. W.; Wang, Y. Q.; Kong, Z. Q.; Zhang, X. B.; Sun, B. J.; Yu, H.; Chen, Q.; Luo, C.; Sun, J.; He, Z. G. Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharm. Sin. B 2021, 11, 3636–3647.

    Article  Google Scholar 

  23. Zhang, S. W.; Wang, Z. Y.; Kong, Z. Q.; Wang, Y. Q.; Zhang, X. B.; Sun, B. J.; Zhang, H. T.; Kan, Q. M.; He, Z. G.; Luo, C. et al. Photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and synergistic chemo-photodynamic therapy. Theranostics 2021, 11, 6019–6032.

    Article  CAS  Google Scholar 

  24. Syeda, M. Z.; Hong, T.; Zhang, M.; Han, Y. F.; Zhu, X. L.; Ying, S. M.; Tang, L. G. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4598-6.

  25. Li, S. M.; Shan, X. Z.; Wang, Y. Q.; Chen, Q.; Sun, J.; He, Z. G.; Sun, B. J.; Luo, C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Control. Release 2020, 326, 510–522.

    Article  CAS  Google Scholar 

  26. Yang, L.; Xu, J. X.; Xie, Z.; Song, F. Q.; Wang, X.; Tang, R. P. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J. Pharm. Sci. 2021, 16, 762–771.

    Article  Google Scholar 

  27. Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

    Article  CAS  Google Scholar 

  28. Han, H. J.; Li, S.; Zhong, Y. Y.; Huang, Y.; Wang, K.; Jin, Q.; Ji, J.; Yao, K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J. Pharm. Sci. 2022, 17, 35–52.

    Article  Google Scholar 

  29. Pei, Q.; Hu, X. L.; Zheng, X. H.; Xia, R.; Liu, S.; Xie, Z. G.; Jing, X. B. Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res. 2019, 12, 877–887.

    Article  CAS  Google Scholar 

  30. Li, G. T.; Sun, B. J.; Li, Y. Q.; Luo, C.; He, Z. G.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, 2101460.

    Article  CAS  Google Scholar 

  31. Tian, C. T.; Guo, J. J.; Miao, Y. F.; Zheng, S. Z.; Sun, B. J.; Sun, M. C.; Ye, Q.; Liu, W. X.; Zhou, S.; Kamei, K. I. et al. Triglyceride-mimetic structure-gated prodrug nanoparticles for smart cancer therapy. J. Med. Chem. 2021, 64, 15936–15948.

    Article  CAS  Google Scholar 

  32. Zhang, A. M.; Hai, L.; Wang, T. Z.; Cheng, H.; Li, M.; He, X. X.; Wang, K. M. NIR-triggered drug delivery system based on phospholipid coated ordered mesoporous carbon for synergistic chemo-photothermal therapy of cancer cells. Chin. Chem. Lett. 2020, 31, 3158–3162.

    Article  CAS  Google Scholar 

  33. Hunter, C. A. Quantifying intermolecular interactions: Guidelines for the molecular recognition toolbox. Angew. Chem., Int. Ed. 2004, 43, 5310–5324.

    Article  CAS  Google Scholar 

  34. Xiao, Y.; Zhang, T.; Ma, X. B.; Yang, Q. C.; Yang, L. L.; Yang, S. C.; Liang, M. Y.; Xu, Z. G.; Sun, Z. J. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv. Sci. 2021, 8, 2101840.

    Article  CAS  Google Scholar 

  35. Tu, L.; Liao, Z. H.; Luo, Z.; Wu, Y. L.; Herrmann, A.; Huo, S. D. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021, 1, 20210023.

    Article  Google Scholar 

  36. Luo, C.; Sun, B. J.; Wang, C.; Zhang, X. B.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H. Q.; Sun, M. C.; Li, Z. B. et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemophotodynamic therapy. J. Control. Release 2019, 302, 79–89.

    Article  CAS  Google Scholar 

  37. Li, Y. N.; Mei, T.; Han, S. P.; Han, T.; Sun, Y. B.; Zhang, H.; An, F. F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. Chin. Chem. Lett. 2020, 31, 3027–3040.

    Article  CAS  Google Scholar 

  38. Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

    Article  Google Scholar 

  39. Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bondmediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

    Article  CAS  Google Scholar 

  40. Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

    Article  CAS  Google Scholar 

  41. An, H. W.; Mamuti, M.; Wang, X. F.; Yao, H. D.; Wang, M. D.; Zhao, L. N.; Li, L. L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration 2021, 1, 20210153.

    Article  Google Scholar 

  42. Ding, J. X.; Chen, J. J.; Gao, L. Q.; Jiang, Z. Y.; Zhang, Y.; Li, M. Q.; Xiao, Q. C.; Lee, S. S.; Chen, X. S. Engineered nanomedicines with enhanced tumor penetration. Nano Today 2019, 29, 100800.

    Article  CAS  Google Scholar 

  43. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  CAS  Google Scholar 

  44. He, C. L.; Zhuang, X. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv. Healthc. Mater. 2012, 1, 48–78.

    Article  CAS  Google Scholar 

  45. Wang, H. X.; Xie, H. Y.; Wang, J. G.; Wu, J. P.; Ma, X. J.; Li, L. L.; Wei, X. Y.; Ling, Q.; Song, P. H.; Zhou, L. et al. Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv. Funct. Mater. 2015, 25, 4956–4965.

    Article  CAS  Google Scholar 

  46. Li, S. M.; Yang, F. J.; Sun, X. X.; Wang, Y. Q.; Zhang, X. B.; Zhang, S. W.; Zhang, H. T.; Kan, Q. M.; Sun, J.; He, Z. G. et al. Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy. Chem. Eng. J. 2021, 426, 130838.

    Article  CAS  Google Scholar 

  47. Yang, F. J.; Ji, Q. Y.; Liao, R.; Li, S. M.; Wang, Y. Q.; Zhang, X. B.; Zhang, S. W.; Zhang, H. T.; Kan, Q. M.; Sun, J. et al. Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy. Chin. Chem. Lett. 2022, 33, 1927–1932.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shenyang Youth Science and Technology Innovation Talents Program (No. RC210452), the Liaoning Revitalization Talents Program (No. XLYC1907129), the Excellent Youth Science Foundation of Liaoning Province (No. 2020-YQ-06), and the China Postdoctoral Science Foundation (Nos. 2020M670794 and 2021MD703858).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenwu Zhang, Cong Luo or Jin Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qiu, Q., Liao, R. et al. Modularly engineered prodrug-nanoassemblies for cancer therapy: Nonpharmacological moiety dominating delivery fates. Nano Res. 16, 980–990 (2023). https://doi.org/10.1007/s12274-022-4819-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4819-z

Keywords

Navigation