Skip to main content
Log in

Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Prodrug-based nanoassembly emerges as a hopeful way for the efficient delivery of antitumor drugs, with carrier-free structure and ultra-high drug loading. Carbon chains are widely used to design self-assembling prodrugs. The impacts of the length of carbon chains on the self-assembly stability, drug delivery efficiency and antitumor effect of prodrugs have not been fully elucidated. Here, three paclitaxel prodrugs were synthesized by conjugating paclitaxel with octanol (C8), decanol (C10) or dodecanol (C12) through disulfide bond. The three prodrugs could form homogeneous nanoparticles, with over 50% drug loading and redox dual-responsivity. Interestingly, the length extension of carbon chains ameliorates the self-assembly and the colloidal stability of prodrugs, thus improving the drug delivery efficiency. The optimal paclitaxel-dodecanol prodrug nanoassemblies exhibit better antitumor efficacy than Taxol and Abraxane. These findings are meaningful for the rational design of advanced nanomedicines in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, R. A.; Andrews, K. S.; Brooks, D.; Fedewa, S. A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R. C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA: Cancer J. Clin. 2019, 69, 184–210.

    Google Scholar 

  2. Kaufmann, S. H.; Earnshaw, W. C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000, 256, 42–49.

    Article  CAS  Google Scholar 

  3. Chabner, B. A.; Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72.

    Article  CAS  Google Scholar 

  4. Rowinsky, E. K.; Donehower, R. C. Paclitaxel (Taxol). N. Engl. J. Med. 1995, 332, 1004–1014.

    Article  CAS  Google Scholar 

  5. Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

    Article  Google Scholar 

  6. Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

    Article  CAS  Google Scholar 

  7. Li, L. X.; Zuo, S. Y.; Dong, F. D.; Liu, T.; Gao, Y. L.; Yang, Y. X.; Wang, X.; Sun, J.; Sun, B. J; He, Z. G. Small changes in the length of diselenide bond-containing linkages exert great influences on the antitumor activity of docetaxel homodimeric prodrug nanoassemblies. Asian J. Pharm. Sci. 2021, 16, 337–349.

    Article  Google Scholar 

  8. Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bondmediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

    Article  CAS  Google Scholar 

  9. Zuo, S. Y.; Sun, B. J.; Yang, Y. X.; Zhou, S.; Zhang, Y.; Guo, M. R.; Sun, M. C.; Luo, C.; He, Z. G.; Sun, J. Probing the superiority of diselenium bond on docetaxel dimeric prodrug nanoassemblies: Small roles taking big responsibilities. Small 2020, 16, 2005039.

    Article  CAS  Google Scholar 

  10. Li, S. M.; Shan, X. Z.; Wang, Y. Q.; Chen, Q.; Sun, J.; He, Z. G.; Sun, B. J.; Luo, C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Control. Release 2020, 326, 510–522.

    Article  CAS  Google Scholar 

  11. Sharma, A.; Lee, M. G.; Won, M.; Koo, S.; Arambula, J. F.; Sessler, J. L.; Chi, S. G.; Kim, J. S. Targeting heterogeneous tumors using a multifunctional molecular prodrug. J. Am. Chem. Soc. 2019, 141, 15611–15618.

    Article  CAS  Google Scholar 

  12. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    Article  CAS  Google Scholar 

  13. Hartshorn, C. M.; Bradbury, M. S.; Lanza, G. M.; Nel, A. E.; Rao, J. H.; Wang, A. Z.; Wiesner, U. B.; Yang, L.; Grodzinski, P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 2018, 12, 24–43.

    Article  CAS  Google Scholar 

  14. Peng, Y.; Chen, L.; Ye, S.; Kang, Y.; Liu, J. Q.; Zeng, S.; Yu, L. S. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J. Pharm. Sci. 2020, 15, 220–236.

    Article  Google Scholar 

  15. Sun, B. J.; Luo, C.; Cui, W. P.; Sun, J.; He, Z. G. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J. Control. Release 2017, 264, 145–159.

    Article  CAS  Google Scholar 

  16. Lv, J.; Wang, C. P.; Li, H. R.; Li, Z.; Fan, Q. Q.; Zhang, Y.; Li, Y. W.; Wang, H.; Cheng, Y. Y. Bifunctional and bioreducible dendrimer bearing a fluoroalkyl tail for efficient protein delivery both in vitro and in vivo. Nano Lett. 2020, 20, 8600–8607.

    Article  CAS  Google Scholar 

  17. Li, S. L.; Saw, P. E.; Lin, C. H.; Nie, Y.; Tao, W.; Farokhzad, O. C.; Zhang, L.; Xu, X. D. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials 2020, 234, 119760.

    Article  CAS  Google Scholar 

  18. Xiao, X.; Wang, K. W.; Zong, Q. Y.; Tu, Y. L.; Dong, Y. S.; Yuan, Y. Y. Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials 2021, 270, 120649.

    Article  CAS  Google Scholar 

  19. Zheng, Y. X.; Lei, J.; Li, Q.; Jin, X.; Li, Q. Y.; Li Y. Interfacial cationization to quicken redox-responsive drug release. Chem. Commun. 2021, 57, 2943–2946.

    Article  CAS  Google Scholar 

  20. Xiao, F.; Chen, Z.; Wei, Z. X.; Tian, L. L. Hydrophobic interaction: A promising driving force for the biomedical applications of nucleic acids. Adv. Sci. 2020, 7, 2001048.

    Article  CAS  Google Scholar 

  21. Chakraborty, S.; Grego, A. S.; Garai, S.; Baranov, M.; Müller, A.; Weinstock, I. A. Alcohols as latent hydrophobes: Entropically driven uptake of 1,2-diol functionalized ligands by a porous capsule in water. J. Am. Chem. Soc. 2019, 141, 9170–9174.

    Article  Google Scholar 

  22. Allen, C. D.; Link, A. J. Self-assembly of catenanes from lasso peptides. J. Am. Chem. Soc. 2016, 138, 14214–14217.

    Article  CAS  Google Scholar 

  23. Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.

    Article  CAS  Google Scholar 

  24. Demangeat, C.; Dou, Y. X.; Hu, B.; Bretonnière, Y.; Andraud, C.; D’Aléo, A.; Wu, J. W.; Kim, E.; Bahers, T. L.; Attias, A. J. σ-Conjugation and H-bond-directed supramolecular self-assembly: Key features for efficient long-lived room temperature phosphorescent organic molecular crystals. Angew. Chem., Int. Ed. 2021, 60, 2446–2454.

    Article  CAS  Google Scholar 

  25. Luo, C.; Sun, J.; Sun B. J.; Liu, D.; Miao, L.; Goodwin, T. J.; Huang, L.; He, Z. G. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 2016, 12, 6353–6362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 82073777), Liaoning Revitalization Talents Program (No. XTYC180801), China Postdoctoral Innovative Talents Support Program (No. BX20190219), and China Postdoctoral Science Foundation (No. 2019M661134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingjun Sun or Jin Sun.

Additional information

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Electronic Supplementary Material

12274_2021_3895_MOESM1_ESM.pdf

Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, L., Wang, D. et al. Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts. Nano Res. 15, 3367–3375 (2022). https://doi.org/10.1007/s12274-021-3895-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3895-9

Keywords

Navigation