Skip to main content
Log in

Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The realization of colloidal alloy quantum dots (QDs) with narrow spectral linewidths requires minimization of the contributions of inhomogeneous and homogeneous broadening to the ensemble spectrum. Recently, there has been remarkable progress in eliminating the inhomogeneous contribution by controlling the size distribution of the QDs. However, considerable challenges remain in suppressing the homogeneous broadening, in terms of both intrinsic principles and rational synthetic routes. We find that ground-state exciton fine structure splitting and exciton—phonon coupling play a pivotal role in the homogeneous broadening mechanism. Here we demonstrate that the elimination of the lattice mismatch strain by using a coherent strain structure can decrease the light-heavy hole splitting, thus suppressing the asymmetric broadening of the emission on the high energy side. Besides, the improvement of the uniformity of the alloy by using a stepwise ion exchange strategy can weaken the exciton—longitudinal optical (LO)-phonon interactions, further minimizing the homogeneous broadening. As a result, the final alloy QD products exhibit a widely tunable blue emission wavelength (445–470 nm) with the narrowest ensemble photoluminescence full width at half maximum (FWHM) of 10.1–13.5 nm (or 58.4–75.3 meV). Our study provides a potential strategy for other semiconductor nanocrystals with ultranarrow spectral linewidths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    Article  CAS  Google Scholar 

  2. Nirmal, M.; Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 1999, 32, 407–414.

    Article  CAS  Google Scholar 

  3. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

    Article  CAS  Google Scholar 

  4. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 1990, 41, 477–496.

    Article  CAS  Google Scholar 

  5. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    Article  CAS  Google Scholar 

  6. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  7. Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

    Article  CAS  Google Scholar 

  8. Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

    Article  CAS  Google Scholar 

  9. Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. 2005, 117, 6870–6873.

    Article  Google Scholar 

  10. Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

    Article  CAS  Google Scholar 

  11. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

    Article  CAS  Google Scholar 

  12. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  CAS  Google Scholar 

  13. Eisler, H. J.; Sundar, V. C.; Bawendi, M. G.; Walsh, M.; Smith, H. I.; Klimov, V. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 2002, 80, 4614–4616.

    Article  CAS  Google Scholar 

  14. Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

    Article  CAS  Google Scholar 

  15. Dang, C. N.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335–339.

    Article  CAS  Google Scholar 

  16. Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

    Article  CAS  Google Scholar 

  17. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, highperformance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  18. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  CAS  Google Scholar 

  19. Bai, J. K.; Zhang, M. L.; Jiang, R. Y.; Wu, Z. M.; Wang, L. F.; Jin, X.; Li, Q. H.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. High color-rendering index and stable white light-emitting diodes based on highly luminescent quantum dots. Part. Part. Syst. Charact. 2021, 38, 2100120.

    Article  CAS  Google Scholar 

  20. Jin, X.; Chang, C.; Zhao, W. F.; Huang, S. J.; Gu, X. B.; Zhang, Q.; Li, F.; Zhang, Y. B.; Li, Q. H. Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer. ACS Appl. Mater. Interfaces 2018, 10, 15803–15811.

    Article  CAS  Google Scholar 

  21. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  22. Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

    Article  CAS  Google Scholar 

  23. Park, Y. S.; Lim, J.; Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 2019, 18, 249–255.

    Article  CAS  Google Scholar 

  24. Cassidy, J.; Ellison, C.; Bettinger, J.; Yang, M. R.; Moroz, P.; Zamkov, M. Enabling narrow emission line widths in colloidal nanocrystals through coalescence growth. Chem. Mater. 2020, 32, 7524–7534.

    Article  CAS  Google Scholar 

  25. Li, Z. H.; Chen, F.; Wang, L.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, N.; Li, L. S. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: Nonblinking, single photoluminescence decay channel, and suppressed FRET. Chem. Mater. 2018, 30, 3668–3676.

    Article  CAS  Google Scholar 

  26. Cui, J.; Beyler, A. P.; Coropceanu, I.; Cleary, L.; Avila, T. R.; Chen, Y.; Cordero, J. M.; Heathcote, S. L.; Harris, D. K.; Chen, O. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths. Nano Lett. 2016, 16, 289–296.

    Article  CAS  Google Scholar 

  27. Kelley, A. M. Electron-phonon coupling in CdSe nanocrystals. J. Phys. Chem. Lett. 2010, 1, 1296–1300.

    Article  CAS  Google Scholar 

  28. Salvador, M. R.; Graham, M. W.; Scholes, G. D. Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 2006, 125, 184709.

    Article  Google Scholar 

  29. Gellen, T. A.; Lem, J.; Turner, D. B. Probing homogeneous line broadening in CdSe nanocrystals using multidimensional electronic spectroscopy. Nano Lett. 2017, 17, 2809–2815.

    Article  CAS  Google Scholar 

  30. Marshall, L. F.; Cui, J.; Brokmann, X.; Bawendi, M. G. Extracting spectral dynamics from single chromophores in solution. Phys. Rev. Lett. 2010, 105, 053005.

    Article  Google Scholar 

  31. Kang, S.; Kim, Y.; Jang, E.; Kang, Y.; Han, S. Fundamental limit of the emission linewidths of quantum dots: An ab initio study of CdSe nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 22012–22018.

    Article  CAS  Google Scholar 

  32. Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

    Article  CAS  Google Scholar 

  33. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

    Article  CAS  Google Scholar 

  34. Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.

    Article  CAS  Google Scholar 

  35. Gindele, F.; Hild, K.; Langbein, W.; Woggon, U. Temperature-dependent line widths of single excitons and biexcitons. J. Lumin. 2000, 87–89, 381–383.

    Article  Google Scholar 

  36. Nomura, S.; Kobayashi, T. Exciton-LO-phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B 1992, 45, 1305–1316.

    Article  CAS  Google Scholar 

  37. Takagahara, T. Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 1993, 71, 3577–3580.

    Article  CAS  Google Scholar 

  38. Kelley, A. M. Exciton-optical phonon coupling in II–VI semiconductor nanocrystals. J. Chem. Phys. 2019, 151, 140901.

    Article  Google Scholar 

  39. Liptay, T. J.; Marshall, L. F.; Rao, P. S.; Ram, R. J.; Bawendi, M. G. Anomalous stokes shift in CdSe nanocrystals. Phys. Rev. B 2007, 76, 155314.

    Article  Google Scholar 

  40. Huang, L.; Ye, Z. K.; Yang, L.; Li, J. Z.; Qin, H. Y.; Peng, X. G. Synthesis of colloidal quantum dots with an ultranarrow photoluminescence peak. Chem. Mater. 2021, 33, 1799–1810.

    Article  CAS  Google Scholar 

  41. Lin, C.; Gong, K.; Kelley, D. F.; Kelley, A. M. Size-dependent exciton-phonon coupling in CdSe nanocrystals through resonance Raman excitation profile analysis. J. Phys. Chem. C 2015, 119, 7491–7498.

    Article  CAS  Google Scholar 

  42. Zhong, X. H.; Feng, Y. Y.; Knoll, W.; Han, M. Y. Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125, 13559–13563.

    Article  CAS  Google Scholar 

  43. Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    Article  CAS  Google Scholar 

  44. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Article  CAS  Google Scholar 

  45. Efros, A. L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475–521.

    Article  CAS  Google Scholar 

  46. Lim, J.; Park, Y. S.; Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49.

    Article  CAS  Google Scholar 

  47. Rainò, G.; Stöferle, T.; Moreels, I.; Gomes, R.; Hens, Z.; Mahrt, R. F. Controlling the exciton fine structure splitting in CdSe/CdS dot-in-rod nanojunctions. ACS Nano 2012, 6, 1979–1987.

    Article  Google Scholar 

  48. Tolbert, S. H.; Alivisatos, A. P. High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 1995, 46, 595–626.

    Article  CAS  Google Scholar 

  49. Yang, C. S.; Hsieh, Y. P.; Kuo, M. C.; Tseng, P. Y.; Yeh, Z. W.; Chiu, K. C.; Shen, J. L.; Chu, A. H. M.; Chou, W. C.; Lan, W. H. Compressive strain induced heavy hole and light hole splitting of Zn1-xCd−xSe epilayers grown by molecular beam epitaxy. Mater. Chem. Phys. 2003, 78, 602–607.

    Article  CAS  Google Scholar 

  50. Efros, A. L. Optical Properties of semiconductor nanocrystals with degenerate valence band. Superlattices Microstruct. 1992, 11, 167–169.

    Article  CAS  Google Scholar 

  51. Laheld, U. E. H.; Einevoll, G. T. Excitons in CdSe quantum dots. Phys. Rev. B 1997, 55, 5184–5204.

    Article  CAS  Google Scholar 

  52. Gao, Y.; Peng, X. G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732.

    Article  CAS  Google Scholar 

  53. Ren, S. F.; Xia, J. B.; Han, H. X.; Wang, Z. P. Electronic structure and optical properties of [(ZnSe)m(CdSe)n]N-ZnSe multiple quantum wells. Phys. Rev. B 1994, 50, 14416.

    Article  CAS  Google Scholar 

  54. Jin, X.; Xie, K. L.; Zhang, T. T.; Lian, H. D.; Zhang, Z. H.; Xu, B.; Li, D. Y.; Li, Q. H. Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem. Commun. 2020, 56, 6130–6133.

    Article  CAS  Google Scholar 

  55. Protière, M.; Reiss, P. Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range. Small 2007, 3, 399–403.

    Article  Google Scholar 

  56. Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

    Article  CAS  Google Scholar 

  57. Lee, H.; Yang, H.; Holloway, P. H. Single-step growth of colloidal ternary ZnCdSe nanocrystals. J. Lumin. 2007, 126, 314–318.

    Article  CAS  Google Scholar 

  58. Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: From core/shell to alloy nanocrystals. ACS Nano 2013, 7, 7913–7930.

    Article  CAS  Google Scholar 

  59. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. J. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    Article  CAS  Google Scholar 

  60. Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.

    Article  CAS  Google Scholar 

  61. Yuan, Y. C.; Zhu, H.; Wang, X. D.; Cui, D. Z.; Gao, Z. H.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643.

    Article  CAS  Google Scholar 

  62. Zhong, X. H.; Zhang, Z. H.; Liu, S. H.; Han, M. Y.; Knoll, W. Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1−xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength. J. Phys. Chem. B 2004, 108, 15552–15559.

    Article  CAS  Google Scholar 

  63. Zhong, X. H.; Feng, Y. Y.; Zhang, Y. L.; Gu, Z. Y.; Zou, L. A facile route to violet-to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction. Nanotechnology 2007, 18, 385606.

    Article  Google Scholar 

  64. Cao, J.; Jiang, Z. J. Thickness-dependent shell homogeneity of ZnSe/CdSe core/shell nanocrystals and their spectroscopic and electron- and hole-transfer dynamics properties. J. Phys. Chem. C 2020, 124, 12049–12064.

    Article  CAS  Google Scholar 

  65. Gong, K.; Kelley, D. F.; Kelley, A. M. Nonuniform excitonic charge distribution enhances exciton-phonon coupling in ZnSe/CdSe alloyed quantum dots. J. Phys. Chem. Lett. 2017, 8, 626–630.

    Article  CAS  Google Scholar 

  66. Yalcin, A. O.; Goris, B.; van Dijk-Moes, R. J. A.; Fan, Z. C.; Erdamar, A. K.; Tichelaar, F. D.; Vlugt, T. J. H.; Van Tendeloo, G.; Bals, S.; Vanmaekelbergh, D. et al. Heat-induced transformation of CdSe-CdS-ZnS core-multishell quantum dots by Zn diffusion into inner layers. Chem. Commun. 2015, 51, 3320–3323.

    Article  CAS  Google Scholar 

  67. Shen, H. B.; Zhou, C. H.; Xu, S. S.; Yu, C. L.; Wang, H. Z.; Chen, X.; Li, L. S. Phosphine-free synthesis of Zn1−xCdxSe/ZnSe/ZnSexS1−x/ZnS core/multishell structures with bright and stable blue-green photoluminescence. J. Mater. Chem. 2011, 21, 6046–6053.

    Article  CAS  Google Scholar 

  68. Sagar, D. M.; Cooney, R. R.; Sewall, S. L.; Dias, E. A.; Barsan, M. M.; Butler, I. S.; Kambhampati, P. Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 2008, 77, 235321.

    Article  Google Scholar 

  69. Shiang, J.; Wolters, R.; Heath, J. Theory of size-dependent resonance Raman intensities in InP nanocrystals. J. Chem. Phys. 1997, 106, 8981–8994.

    Article  CAS  Google Scholar 

  70. Seong, M. J.; Mićić, O. I.; Nozik, A.; Mascarenhas, A.; Cheong, H. M. Size-dependent Raman study of InP quantum dots. Appl. Phys. Lett. 2003, 82, 185–187.

    Article  CAS  Google Scholar 

  71. Hennion, B.; Moussa, F.; Pepy, G.; Kunc, K. Normal modes of vibrations in ZnSe. Phys. Lett. A 1971, 36, 376–378.

    Article  CAS  Google Scholar 

  72. Gong, K.; Kelley, D. F.; Kelley, A. M. Resonance Raman spectroscopy and electron-phonon coupling in Zinc selenide quantum dots. J. Phys. Chem. C 2016, 120, 29533–29539.

    Article  CAS  Google Scholar 

  73. Tschirner, N.; Lange, H.; Schliwa, A.; Biermann, A.; Thomsen, C.; Lambert, K.; Gomes, R.; Hens, Z. Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis. Chem. Mater. 2012, 24, 311–318.

    Article  CAS  Google Scholar 

  74. Aubert, T.; Cirillo, M.; Flamee, S.; Van Deun, R.; Lange, H.; Thomsen, C.; Hens, Z. Homogeneously alloyed CdSe1−xSx quantum dots (0 ≤ x ≤ 1): An efficient synthesis for full optical tunability. Chem. Mater. 2013, 25, 2388–2390.

    Article  CAS  Google Scholar 

  75. Kagan, C. R.; Murray, C. B.; Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 1996, 54, 8633–8643.

    Article  CAS  Google Scholar 

  76. Bai, J. K.; Wang, L. F.; Chen, W. Y.; Jin, X.; Li, Q. H.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. Efficient quantum dot light-emitting diodes based on well-type thick-shell CdxZn1−xS/CdSe/CdyZn1−yS quantum dots. Part. Part. Syst. Charact. 2020, 37, 2000115.

    Article  CAS  Google Scholar 

  77. Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154.

    Article  CAS  Google Scholar 

  78. Paufler, P. Numerical data and functional relationships in science and technology—New series. Z. Kristallogr. Cryst. Mater. 1994, 209, 1009–1010.

    Article  Google Scholar 

  79. Pässler, R. Unprecedented integral-free Debye temperature formulas: Sample applications to heat capacities of ZnSe and ZnTe. Adv. Condens. Matter Phys. 2017, 2017, 9321439.

    Article  Google Scholar 

  80. Lee, J.; Koteles, E. S.; Vassell, M. O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Phy. Rev. B 1986, 33, 5512.

    Article  CAS  Google Scholar 

  81. Zhang, L. G.; Shen, D. Z.; Fan, X. W.; Lu, S. Z. Exciton-phonon scattering in CdSe/ZnSe quantum dots. Chin. Phys. Lett. 2002, 19, 578–580.

    Article  Google Scholar 

  82. Kelley, A. M. Electron-phonon coupling in CdSe nanocrystals from an atomistic phonon model. ACS Nano 2011, 5, 5254–5262.

    Article  CAS  Google Scholar 

  83. Valerini, D.; Cretí, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 2005, 71, 235409.

    Article  Google Scholar 

  84. De Oliveira, C. R. M.; De Paula, A. M.; Plentz Filho, F. O.; Medeiros Neto, J. A.; Barbosa, L. C.; Alves, O. L.; Menezes, E. A.; Rios, J. M. M.; Fragnito, H. L.; Cruz, C. H. B. et al. Probing of the quantum dot size distribution in CdTe-doped glasses by photoluminescence excitation spectroscopy. Appl. Phys. Lett. 1995, 66, 439–441.

    Article  CAS  Google Scholar 

  85. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Natural Science Foundation of China (No. 12174169), the Natural Science Foundation of Guangdong Province (Nos. 2021A1515012292 and 2022A1515012448), the Scientific Research Foundation of the Higher Education Institutions of Guangdong Province (Nos. 2019KCXTD012, 2020ZDZX3034, 2019KZDZX2008, and 2020ZDZX2055), the Natural Science Foundation of Jiangxi Province (Nos. 20192ACBL21045 and 20181BBE50022), the Talent Project of Lingnan Normal University (Nos. ZL2021029 and ZL2021030), the Science and Technology Plan Project of Zhanjiang (Nos. 2020B01085, 2021A05233, 2020A03003, and 2021A05042), the Young Innovative Talents Project of University of Guangdong Province (No. 2018KQNCX153), and the Yanling Outstanding Yong Teacher Training Program Funded Project of Lingnan Normal University (No. YL20200102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Jin or Yinglin Song.

Electronic Supplementary Material

12274_2022_4784_MOESM1_ESM.pdf

Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Wang, L., Zhang, T. et al. Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling. Nano Res. 16, 1576–1585 (2023). https://doi.org/10.1007/s12274-022-4784-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4784-6

Keywords

Navigation