Skip to main content
Log in

Surface and intrinsic contributions to extinction properties of ZnSe quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface (Se-ZnSe or Zn-ZnSe QDs). In addition to commonly observed photoluminescence quenching by anionic surface sites, Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible (Vis) absorption spectra. Similar to most QDs reported in literature, monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap. However, for monodisperse Se-ZnSe QDs, all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap. Along increasing their size, a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones, which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs. Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size, both of them approach the same bulk limit. In addition to contribution of the lattice, extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes, which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping. For Se-ZnSe QDs, there is the third term identified for their extinction coefficients per nanocrystal, which is proportional to the square of size of the QDs and consistent with surface contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 1984, 80, 4464–4469.

    CAS  Google Scholar 

  2. Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Melting in semiconductor nanocrystals. Science1992, 256, 1425–1427.

    CAS  Google Scholar 

  3. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature1994, 370, 354–357.

    CAS  Google Scholar 

  4. Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature2002, 420, 800–803.

    CAS  Google Scholar 

  5. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, highperformance light-emitting diodes based on quantum dots. Nature2014, 515, 96–99.

    CAS  Google Scholar 

  6. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

    CAS  Google Scholar 

  7. Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science1998, 281, 2013–2016.

    CAS  Google Scholar 

  8. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science1998, 281, 2016–2018.

    CAS  Google Scholar 

  9. Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C2008, 112, 11600–11608.

    CAS  Google Scholar 

  10. Yu, Y. H.; Kamat, P. V.; Kuno, M. A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Adv. Funct. Mater. 2010, 20, 1464–1472.

    CAS  Google Scholar 

  11. Pan, Z. X.; Zhang, H.; Cheng, K.; Hou, Y. M.; Hua, J. L.; Zhong, X. H. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano2012, 6, 3982–3991.

    CAS  Google Scholar 

  12. Jung, M. H.; Chu, M. J. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices. Nanoscale2014, 6, 9241–9249.

    CAS  Google Scholar 

  13. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

    CAS  Google Scholar 

  14. Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95, 525–532.

    CAS  Google Scholar 

  15. Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B2002, 106, 7619–7622.

    CAS  Google Scholar 

  16. Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

    CAS  Google Scholar 

  17. Nozik, A. J.; Memming, R. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 1996, 100, 13061–13078.

    CAS  Google Scholar 

  18. Schmelz, O.; Mews, A.; Basché, T.; Herrmann, A.; Müllen, K. Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir2001, 17, 2861–2865.

    CAS  Google Scholar 

  19. Zeng, P.; Kirkwood, N.; Mulvaney, P.; Boldt, K.; Smith, T. A. Shell effects on hole-coupled electron transfer dynamics from CdSe/CdS quantum dots to methyl viologen. Nanoscale2016, 8, 10380–10387.

    CAS  Google Scholar 

  20. Li, J. Z.; Chen, J. L.; Shen, Y. M.; Peng, X. G. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 2018, 11, 3991–4004.

    CAS  Google Scholar 

  21. Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337–10346.

    CAS  Google Scholar 

  22. Jones, M.; Scholes, G. D. On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 2010, 20, 3533–3538.

    CAS  Google Scholar 

  23. Jones, M.; Lo, S. S.; Scholes, G. D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. USA2009, 106, 3011–3016.

    CAS  Google Scholar 

  24. Chou, H. L.; Tseng, C. H.; Pillai, K. C.; Hwang, B. J.; Chen, L. Y. Surface related emission in CdS quantum dots. DFT simulation studies. J. Phys. Chem. C2011, 115, 20856–20863.

    CAS  Google Scholar 

  25. Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

    CAS  Google Scholar 

  26. Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.

    CAS  Google Scholar 

  27. Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504–17512.

    CAS  Google Scholar 

  28. Fischer, S. A.; Crotty, A. M.; Kilina, S. V.; Ivanov, S. A.; Tretiak, S. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale2012, 4, 904–914.

    CAS  Google Scholar 

  29. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

    CAS  Google Scholar 

  30. Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano2014, 8, 5863–5872.

    CAS  Google Scholar 

  31. Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-black” PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875–1886.

    CAS  Google Scholar 

  32. Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.

    CAS  Google Scholar 

  33. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of Zns. Phys. Rev. Lett. 1994, 72, 416–419.

    CAS  Google Scholar 

  34. Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem., Int. Ed.2017, 56, 7038–7054.

    CAS  Google Scholar 

  35. Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science2008, 319, 1776–1779.

    CAS  Google Scholar 

  36. Chen, O.; Shelby, D. E.; Yang, Y. A.; Zhuang, J. Q.; Wang, T.; Niu, C. G.; Omenetto, N.; Cao, Y. C. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew. Chem., Int. Ed.2010, 49, 10132–10135.

    CAS  Google Scholar 

  37. Norberg, N. S.; Parks, G. L.; Salley, G. M.; Gamelin, D. R. Giant excitonic zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc. 2006, 128, 13195–13203.

    CAS  Google Scholar 

  38. Yang, X. L.; Pu, C. D.; Qin, H. Y.; Liu, S. J.; Xu, Z. A.; Peng, X. G. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 2288–2298.

    CAS  Google Scholar 

  39. Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

    CAS  Google Scholar 

  40. Lai, R. C.; Pu, C. D.; Peng, X. G. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. J. Am. Chem. Soc. 2018, 140, 9174–9183.

    CAS  Google Scholar 

  41. Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: Berlin, 2004.

    Google Scholar 

  42. Jasieniak, J.; Mulvaney, P. From Cd-rich to Se-rich—The manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841–2848.

    CAS  Google Scholar 

  43. Zhu, C. Q.; Chen, D. D.; Cao, W. C.; Lai, R. C.; Pu, C. D.; Li, J. Z.; Kong, X. Q.; Peng, X. G. Facet-dependent on-surface reactions in the growth of CdSe nanoplatelets. Angew. Chem., Int. Ed.2019, 58, 17764–17770.

    CAS  Google Scholar 

  44. Dean, J. A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill, Inc: New York, 1999; pp 330–340.

    Google Scholar 

  45. Wang, L. W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B1996, 53, 9579–9582.

    CAS  Google Scholar 

  46. Kilina, S. V.; Neukirch, A. J.; Habenicht, B. F.; Kilin, D. S.; Prezhdo, O. V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404.

    Google Scholar 

  47. Wei, H. H. Y.; Evans, C. M.; Swartz, B. D.; Neukirch, A. J.; Young, J.; Prezhdo, O. V.; Krauss, T. D. Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett. 2012, 12, 4465–4471.

    CAS  Google Scholar 

  48. Omogo, B.; Aldana, J. F.; Heyes, C. D. Radiative and nonradiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands. J. Phys. Chem. C2013, 117, 2317–2327.

    CAS  Google Scholar 

  49. Mahler, B.; Lequeux, N.; Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 2010, 132, 953–959.

    CAS  Google Scholar 

  50. Yang, Y.; Li, J. Z.; Lin, L.; Peng, X. G. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Res. 2015, 8, 3353–3364.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (No. 2016YFB0401600), the National Natural Science Foundation of China (No. 91833303), Joint NSFC-ISF Research (No. 21761142009), and the education department of Fujian Province (No. JA13013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Li, J., Pu, C. et al. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 13, 824–831 (2020). https://doi.org/10.1007/s12274-020-2703-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2703-2

Keywords

Navigation