Skip to main content
Log in

Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties, however with inevitable sacrifice of their electrical conductivity and electromagnetic interference (EMI) shielding performance. This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber (ANF) and Ti3C2Tx MXene/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) layers. The ANF layer serves to provide good mechanical stability, whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity. Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer. The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4 µm was shown to display low sheet resistance (2.18 Ω/sq), good EMI shielding effectiveness (EMI SE of 48.1 dB), high mechanical strength (155.9 MPa), and overall toughness (19.4 MJ/m3). Moreover, the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions, producing excellent Joule heating (382 °C at 4 V) and photothermal conversion (59.6 °C at 100 mW/m2) properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, Z. H.; Jiang, F. Z; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

    Article  CAS  Google Scholar 

  2. Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

    Article  Google Scholar 

  3. Jia, L. C.; Zhang, G. Q.; Xu, L.; Sun, W. J.; Zhong, G. J.; Lei, J.; Yan, D. X.; Li, Z. M. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 1680–1688.

    Article  CAS  Google Scholar 

  4. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull., in press, https://doi.org/10.1016/j.scib.2022.06.017.

  5. Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

    Article  CAS  Google Scholar 

  6. Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

    Article  CAS  Google Scholar 

  7. Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

    Article  CAS  Google Scholar 

  8. Guan, Q. F.; Han, Z. M.; Yang, K. P.; Yang, H. B.; Ling, Z. C.; Yin, C. H.; Yu, S. H. Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 2021, 21, 2532–2537.

    Article  CAS  Google Scholar 

  9. Wang, G. L.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G. Z.; Li, H. P.; Zhao, G. Q.; Park, C. B. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2018, 10, 1195–1203.

    Article  CAS  Google Scholar 

  10. Wang, G. L.; Zhao, J. C.; Ge, C. B.; Zhao, G. Q.; Park, C. B. Nanocellular poly(ether-block-amide)/MWCNT nanocomposite films fabricated by stretching-assisted microcellular foaming for high-performance EMI shielding applications. J. Mater. Chem. C 2021, 9, 1245–1258.

    Article  CAS  Google Scholar 

  11. Pang, K.; Liu, X. T.; Liu, Y. J.; Chen, Y. R.; Xu, Z.; Shen, Y.; Gao, C. Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 2021, 179, 202–208.

    Article  CAS  Google Scholar 

  12. Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

    Article  CAS  Google Scholar 

  13. Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

    Article  Google Scholar 

  14. Zhang, L.; Liu, B. W.; Wang, Y. Z.; Fu, T.; Zhao, H. B. P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B:Eng. 2022, 238, 109944.

    Article  CAS  Google Scholar 

  15. Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

    Article  CAS  Google Scholar 

  16. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

  17. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  18. Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 2021, 15, 7668–7681.

    Article  CAS  Google Scholar 

  19. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultraflexible Crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  Google Scholar 

  20. Shahzad, F.; Alhabeb, M.; Hatter C. B.; Anasori, B.; Man Hong, S.; Koo C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  Google Scholar 

  21. Lipton, J.; Röhr, J. A.; Dang, V.; Goad, A.; Maleski, K.; Lavini, F.; Han, M. K.; Tsai, E. H. R.; Weng, G. M.; Kong, J. et al. Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 2020, 3, 546–557.

    Article  Google Scholar 

  22. Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

    Article  CAS  Google Scholar 

  23. Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

    Article  CAS  Google Scholar 

  24. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

    CAS  Google Scholar 

  25. Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for highperformance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

    Article  Google Scholar 

  26. Rajavel, K.; Luo, S. B.; Wan, Y. J.; Yu, X. C.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. Part A:Appl. Sci. Manuf. 2020, 129, 105693.

    Article  CAS  Google Scholar 

  27. Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

    Article  CAS  Google Scholar 

  28. Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 13, 12405–12417.

    Article  Google Scholar 

  29. Zhou, B.; Zhang, Z.; Li, Y. L.; Han, G. J.; Feng, Y. Z.; Wang, B.; Zhang, D. B.; Ma, J. M.; Liu, C. T. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 2020, 12, 4895–4905.

    Article  CAS  Google Scholar 

  30. Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

    Article  CAS  Google Scholar 

  31. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  32. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 13, 4747–4755.

    Article  Google Scholar 

  33. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  Google Scholar 

  34. Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

    Article  CAS  Google Scholar 

  35. Luo, S. L.; Xiang, T. T.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Feng, Y. Z. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134.

    Article  Google Scholar 

  36. Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  37. Lee, G. S.; Yun, T.; Kim, H.; Kim, I. H.; Choi, J.; Lee, S. H.; Lee, H. J.; Hwang, H. S.; Kim, J. G.; Kim, D. W. et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 2020, 14, 11722–11732.

    Article  CAS  Google Scholar 

  38. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  39. Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

    Article  CAS  Google Scholar 

  40. Wan, Y. J.; Li, X. M.; Zhu, P. L.; Sun, R.; Wong, C. P.; Liao, W. H. Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 130, 105764.

    Article  CAS  Google Scholar 

  41. Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

    Article  CAS  Google Scholar 

  42. Jasna, M.; Pushkaran, N. K.; Manoj, M.; Aanandan, C. K.; Jayaraj, M. K. Facile preparation of lightweight and flexible PVA/PEDOT: PSS/MWCNT ternary composite for high-performance EMI shielding in the X-band through absorption mechanism. J. Electron. Mater. 2020, 49, 1689–1701.

    Article  CAS  Google Scholar 

  43. Yu, J. W.; Gu, W. H.; Zhao, H. Q.; Ji, G. B. Lightweight, flexible and freestanding PVA/PEDOT: PSS/AgNWs film for highperformance electromagnetic interference shielding. Sci. China Mater. 2021, 64, 1723–1732.

    Article  CAS  Google Scholar 

  44. Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

    Article  CAS  Google Scholar 

  45. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

    Article  CAS  Google Scholar 

  46. Gong, S.; Sheng, X. X.; Li, X. L.; Sheng, M. J.; Wu, H.; Lu, X.; Qu, J. P. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 2022, 32, 2200570.

    Article  CAS  Google Scholar 

  47. Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultralight MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

    Article  CAS  Google Scholar 

  48. Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

    Article  CAS  Google Scholar 

  49. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for highperformance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  CAS  Google Scholar 

  50. Al-Saleh, M. H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746.

    Article  CAS  Google Scholar 

  51. Wei, L. F.; Ma, J. Z.; Ma, L.; Zhao, C. X.; Xu, M. L.; Qi, Q.; Zhang, W. B.; Zhang, L.; He, X.; Park, C. B. Computational optimizing the electromagnetic wave reflectivity of double-layered polymer nanocomposites. Small Methods 2022, 6, 2101510.

    Article  CAS  Google Scholar 

  52. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  53. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  54. Liu, Z. X.; Wang, W. Y.; Tan, J. J.; Liu, J.; Zhu, M. F.; Zhu, B. L.; Zhang, Q. Y. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 7170–7180.

    Article  CAS  Google Scholar 

  55. Xie, F.; Jia, F. F.; Zhuo, L. H.; Lu, Z. Q.; Si, L. M.; Huang, J. Z.; Zhang, M. Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391.

    Article  CAS  Google Scholar 

  56. Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

    Article  CAS  Google Scholar 

  57. Xu, X. R.; Wu, S. N.; Cui, J.; Yang, L. Y.; Liu, D. Y.; Zhang, Y. Z.; Chen, X.; Wu, K.; Sun, D. P. Insights into the microstructures and reinforcement mechanism of nano-fibrillated cellulose/MXene based electromagnetic interference shielding film. Cellulose 2021, 28, 3311–3325.

    Article  CAS  Google Scholar 

  58. Miao, M.; Liu, R. T.; Thaiboonrod, S.; Shi, L. Y.; Cao, S. M.; Zhang, J. F.; Fang, J. H.; Feng, X. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 3120–3126.

    Article  CAS  Google Scholar 

  59. Zhan, Z. Y.; Song, Q. C.; Zhou, Z. H.; Lu, C. H. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 2019, 7, 9820–9829.

    Article  CAS  Google Scholar 

  60. Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.

    Article  CAS  Google Scholar 

  61. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

    Article  CAS  Google Scholar 

  62. Ge, C. B.; Wang, G. L.; Li, X. Y.; Chai, J. L.; Li, B.; Wan, G. P.; Zhao, G. Q.; Wang, G. Z. Large cyclic deformability of microcellular TPU/MWCNT composite film with conductive stability, and electromagnetic interference shielding and self-cleaning performance. Compos. Sci. Technol. 2020, 197, 108247.

    Article  CAS  Google Scholar 

  63. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    Article  CAS  Google Scholar 

  64. Li, L.; Cao, Y. X.; Liu, X. Y.; Wang, J. F.; Yang, Y. Y.; Wang, W. J. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 2020, 12, 27350–27360.

    Article  CAS  Google Scholar 

  65. Lordan, D.; Burke, M.; Manning, M.; Martin, A.; Amann, A.; O’Connell, D.; Murphy, R.; Lyons, C.; Quinn, A. J. Asymmetric pentagonal metal meshes for flexible transparent electrodes and heaters. ACS Appl. Mater. Interfaces 2017, 9, 4932–4940.

    Article  CAS  Google Scholar 

  66. Kim, C.; Lee, M. J.; Hong, S. J.; Kim, Y. S.; Lee, J. Y. A flexible transparent heater with ultrahigh thermal efficiency and fast thermal response speed based on a simple solution-processed indium tin oxide nanoparticles-silver nanowires composite structure on photo-polymeric film. Compos. Sci. Technol. 2018, 157, 107–118.

    Article  CAS  Google Scholar 

  67. Jang, N. S.; Kim, K. H.; Ha, S. H.; Jung, S. H.; Lee, H. M.; Kim, J. M. Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Appl. Mater. Interfaces 2017, 9, 19612–19621.

    Article  CAS  Google Scholar 

  68. Lin, H.; Wang, X. G.; Yu, L. D.; Chen, Y.; Shi, J. L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 11, 384–391.

    Article  Google Scholar 

  69. You, J.; Heo, J. S.; Kim, J.; Park, T.; Kim, B.; Kim, H. S.; Choi, Y.; Kim, H. O.; Kim, E. Noninvasive photodetachment of stem cells on tunable conductive polymer Nano thin films: Selective harvesting and preserved differentiation capacity. ACS Nano 2013, 7, 4119–4128.

    Article  CAS  Google Scholar 

  70. Li, Y. L.; Zhou, B.; Shen, Y.; He, C. G.; Wang, B.; Liu, C. T.; Feng, Y. Z.; Shen, C. Y. Scalable manufacturing of flexible, durable Ti3C2Tx MXene/polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos. Part B:Eng. 2021, 217, 108902.

    Article  CAS  Google Scholar 

  71. Xin, W.; Ma, M. G.; Chen, F. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl. Nano Mater. 2021, 4, 7234–7243.

    Article  CAS  Google Scholar 

  72. Zhou, B.; Su, M. J.; Yang, D. Z.; Han, G. J.; Feng, Y. Z.; Wang, B.; Ma, J. L.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 2020, 12, 40859–40869.

    Article  CAS  Google Scholar 

  73. Wang, X. F.; Lei, Z. W.; Ma, X. D.; He, G. F.; Xu, T.; Tan, J.; Wang, L. L.; Zhang, X. S.; Qu, L. J.; Zhang, X. J. A lightweight MXene-coated nonwoven fabric with excellent flame Retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 2022, 430, 132605.

    Article  CAS  Google Scholar 

  74. Liu, X. Y.; Jin, X. X.; Li, L.; Wang, J. F.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 2020, 8, 12526–12537.

    Article  CAS  Google Scholar 

  75. Dong, J. W.; Luo, S. L.; Ning, S. P.; Yang, G.; Pan, D.; Ji, Y. X.; Feng, Y. Z.; Su, F. M.; Liu, C. T. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 2021, 13, 60478–60488.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work by the National Key Research and Development Program of China (No. 2019YFA0706802), the National Natural Science Foundation of China (Nos. 51903223 and 12072325), and the National Natural Science Foundation of China of Henan Province (No. 222300420541). The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuezhan Feng or Chuntai Liu.

Electronic Supplementary Material

12274_2022_4756_MOESM1_ESM.pdf

Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Song, J., Wang, B. et al. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 15, 9520–9530 (2022). https://doi.org/10.1007/s12274-022-4756-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4756-x

Keywords

Navigation