Skip to main content
Log in

Facile Preparation of Lightweight and Flexible PVA/PEDOT:PSS/MWCNT Ternary Composite for High-Performance EMI Shielding in the X-Band Through Absorption Mechanism

  • Progress and Challenges in Developing Electromagnetic Interference Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electromagnetic safeguards are key factors for electronic devices. Lightweight and highly flexible polymer composite films with high electrical conductivity are considered to be efficient electromagnetic interference (EMI) shielding materials. Polymer composites offer alternative to metal-based composites which have poor flexibility, corrodibility, and are difficult to process. Here, highly flexible polyvinyl alcohol/poly (3, 4-ethylenedioxythiophene):polystyrene sulfonate/multiwalled carbon nanotube (PVA/PEDOT:PSS/MWCNT) free-standing composite films were fabricated by a solution mixing process followed by a simple solvent casting technique. PVA/PEDOT:PSS/MWCNT composite films of thickness around 20 microns showed high EMI shielding effectiveness (SE) in the X-band over the frequency range of 8–12 GHz. Incorporation of MWCNT into the polymer matrix considerably increased the mechanical strength of the PVA/PEDOT:PSS/MWCNT composite free-standing film. This investigation revealed that PVA/PEDOT:PSS/MWCNT composite film with 0.5 wt.% of MWCNT showed excellent absorption-dominated EMI SE of 60 dB over the frequency range of 8–12 GHz with extensive tensile strength. Our study opens a facile way to design flexible, lightweight and free-standing films as EMI shielding for next-generation flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R.K.Y. Li, Langmuir 28, 7101 (2012).

    Article  CAS  Google Scholar 

  2. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Adv. Funct. Mater. 25, 559 (2015).

    Article  CAS  Google Scholar 

  3. M. Layani, A. Kamyshny, and S. Magdassi, Nanoscale 6, 5581 (2014).

    Article  CAS  Google Scholar 

  4. D. Markham, Mater. Des. 21, 45 (1999).

    Article  Google Scholar 

  5. C.J. von Klemperer and D. Maharaj, Compos. Struct. 91, 467 (2009).

    Article  Google Scholar 

  6. D.D.L. Chung, Carbon 50, 3342 (2012).

    Article  CAS  Google Scholar 

  7. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, and L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008).

    Article  CAS  Google Scholar 

  8. D.D.L. Chung, J. Mater. Eng. Perform. 9, 350 (2000).

    Article  CAS  Google Scholar 

  9. I. C. P. Project, An Introduction to Conductive Polymer Composites (Akron: Smithers Rapra Technology, 2011).

    Google Scholar 

  10. S.P. Pawar, S. Kumar, A. Misra, S. Deshmukh, K. Chatterjee, and S. Bose, RSC Adv. 5, 17716 (2015).

    Article  CAS  Google Scholar 

  11. S.P. Pawar, D.A. Marathe, K. Pattabhi, and S. Bose, J. Mater. Chem. A 3, 656 (2015).

    Article  CAS  Google Scholar 

  12. S.P. Pawar, S. Stephen, S. Bose, and V. Mittal, Phys. Chem. Chem. Phys. 17, 14922 (2015).

    Article  CAS  Google Scholar 

  13. G.P. Kar, S. Biswas, and S. Bose, Phys. Chem. Chem. Phys. 17, 14856 (2015).

    Article  CAS  Google Scholar 

  14. P. Xavier and S. Bose, Phys. Chem. Chem. Phys. 17, 14972 (2015).

    Article  CAS  Google Scholar 

  15. S. Biswas, Phys. Chem. Chem. Phys. 17, 27698 (2015).

    Article  CAS  Google Scholar 

  16. S. Biswas, G.P. Kar, and S. Bose, Nanoscale 7, 11334 (2015).

    Article  CAS  Google Scholar 

  17. M. Sharma, G. Madras, and S. Bose, J. Mater. Chem. A 3, 5991 (2015).

    Article  CAS  Google Scholar 

  18. V. Bhingardive, M. Sharma, S. Suwas, G. Madras, and S. Bose, RSC Adv. 5, 35909 (2015).

    Article  CAS  Google Scholar 

  19. S. Biswas, S.S. Panja, and S. Bose, Mater. Chem. Front. 1, 132 (2017).

    Article  CAS  Google Scholar 

  20. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, and J.K. Kim, ACS Appl. Mater. Interfaces 9, 9059 (2017).

    Article  CAS  Google Scholar 

  21. Y. Xu, Y. Li, W. Hua, A. Zhang, and J. Bao, ACS Appl. Mater. Interfaces 8, 24131 (2016).

    Article  CAS  Google Scholar 

  22. B. Shen, Y. Li, W. Zhai, and W. Zheng, ACS Appl. Mater. Interfaces 8, 8050 (2016).

    Article  CAS  Google Scholar 

  23. T.M. Swager, Macromolecules 50, 4867 (2017).

    Article  CAS  Google Scholar 

  24. S.T. Hsiao, C.C.M. Ma, W.H. Liao, Y.S. Wang, S.M. Li, Y.C. Huang, R. Bin Yang, and W.F. Liang, ACS Appl. Mater. Interfaces 6, 10667 (2014).

    Article  CAS  Google Scholar 

  25. W.L. Song, J. Wang, L.Z. Fan, Y. Li, C.Y. Wang, and M.S. Cao, ACS Appl. Mater. Interfaces 6, 10516 (2014).

    Article  CAS  Google Scholar 

  26. A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh, A.P. Singh, S.K. Dhawan, and S.R. Dhakate, ACS Appl. Mater. Interfaces 8, 10600 (2016).

    Article  CAS  Google Scholar 

  27. B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, and C.B. Park, ACS Appl. Mater. Interfaces 9, 20873 (2017).

    Article  CAS  Google Scholar 

  28. H. Li, X. Lu, D. Yuan, J. Sun, F. Erden, F. Wang, and C. He, J. Mater. Chem. C 5, 8694 (2017).

    Article  CAS  Google Scholar 

  29. S.M.N. Sultana, S.P. Pawar, M. Kamkar, and U. Sundararaj, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07371-8.

    Article  CAS  Google Scholar 

  30. H. Nallabothula, Y. Bhattacharjee, L. Samantara, and S. Bose, ACS Omega 4, 1781 (2019).

    Article  CAS  Google Scholar 

  31. P. Li, D. Du, L. Guo, Y. Guo, and J. Ouyang, J. Mater. Chem. C 4, 6525 (2016).

    Article  CAS  Google Scholar 

  32. M.L. Hallensleben, R. Fuss, and F. Mummy, in Ullmann’s Encyclopedia of Industrial Chemistry, ed. B. Elvers (Wiley, Weinheim, 2000), pp. 1–23

  33. K. Lakshmi, H. John, K.T. Mathew, R. Joseph, and K.E. George, Acta Mater. 57, 371 (2009).

    Article  CAS  Google Scholar 

  34. N. Muthukumar, G. Thilagavathi, and T. Kannaian, High Perform. Polym. 27, 105 (2015).

    Article  CAS  Google Scholar 

  35. N. Joseph, C. Janardhanan, and M.T. Sebastian, Compos. Sci. Technol. 101, 139 (2014).

    Article  CAS  Google Scholar 

  36. M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, M. Luo, and C. Li, Nanoscale 6, 3796 (2014).

    Article  CAS  Google Scholar 

  37. T.K. Gupta, B.P. Singh, S. Teotia, V. Katyal, S.R. Dhakate, and R.B. Mathur, J. Polym. Res. 20, 32 (2013).

    Article  CAS  Google Scholar 

  38. T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, and R.B. Mathur, J. Mater. Chem. A 1, 9138 (2013).

    Article  CAS  Google Scholar 

  39. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W.G. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013).

    Article  CAS  Google Scholar 

  40. Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Adv. Mater. 25, 1296 (2013).

    Article  CAS  Google Scholar 

  41. Z. Zeng, M. Chen, Y. Pei, S.I. Seyed Shahabadi, B. Che, P. Wang, and X. Lu, ACS Appl. Mater. Interfaces 9, 32211 (2017).

    Article  CAS  Google Scholar 

  42. S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, and Y.-C. Huang, Carbon 60, 57 (2013).

    Article  CAS  Google Scholar 

  43. S.K. Marka, B. Sindam, K.C. James Raju, and V.V.S.S. Srikanth, RSC Adv. 5, 36498 (2015).

    Article  CAS  Google Scholar 

  44. S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, C.Y. Yang, S.C. Lin, and R. Bin Yang, ACS Appl. Mater. Interfaces 7, 2817 (2015).

    Article  CAS  Google Scholar 

  45. D.C. Yan, S.Y. Chen, M.K. Wu, C.C. Chi, J.H. Chao, and M.L.H. Green, Appl. Phys. Lett. 96, 18 (2010).

    Google Scholar 

  46. K. Lipert, M. Ritschel, A. Leonhardt, Y. Krupskaya, B. Büchner, and R. Klingeler, J. Phys. Conf. Ser. 200, 072061 (2010).

    Article  CAS  Google Scholar 

  47. X.G. Sun, M. Gao, C. Li, and Y. Wu, Microwave Absorption Characteristics of Carbon Nanotubes, ed. S. Yellampalli (Europe: In Tech, 2011), pp. 265–278.

    Google Scholar 

Download references

Acknowledgments

This work is supported by Kerala State Council for Science, Technology and Environment (286/2014/KSCSTE), Govt. of Kerala. One of the authors (Jasna) is grateful to UGC for awarding BSRRFSMS fellowship. The authors wish to express their appreciation to Dr. Honey John, Department of Polymer Science and Rubber Technology, CUSAT, for the UTM measurement. The authors acknowledge the financial support extended by DST-FIST scheme, Government of India, for acquiring the FE-SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Jayaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasna, M., Pushkaran, N.K., Manoj, M. et al. Facile Preparation of Lightweight and Flexible PVA/PEDOT:PSS/MWCNT Ternary Composite for High-Performance EMI Shielding in the X-Band Through Absorption Mechanism. J. Electron. Mater. 49, 1689–1701 (2020). https://doi.org/10.1007/s11664-019-07676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07676-8

Keywords

Navigation