Skip to main content
Log in

Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries (SIBs) because of its low operating potential, high capacity, resource availability, and low cost. However, scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency (ICE), an excellent rate capability, and good cycling stability. In this work, we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity. Compared with the hard carbon derived from basswood, the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g−1 at 200 mA·g−1and cycling stability with 93.9% of its capacity retention after 200 cycles at 40 mA·g−1, as well as the increased ICE from 84.3% to 88.2%. Additionally, ex-situ X-ray diffraction indicates that Na+ adsorption caused the sloping capacity, whereas Na+ intercalation between interlayer spacing corresponded to the low potential plateau capacity. This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

    Google Scholar 

  2. He, H. N.; Sun, D.; Tang, Y. E.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251.

    Google Scholar 

  3. Zhang, Z. Z.; Du, Y. C.; Wang, Q. C.; Xu, J. Y.; Zhou, Y. N.; Bao, J. C.; Shen, J.; Zhou, X. S. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 17504–17510.

    CAS  Google Scholar 

  4. Cheng, Z. W.; Fan, X. Y.; Yu, L. Z.; Hua, W. B.; Guo, Y. J.; Feng, Y. H.; Ji, F. D.; Liu, M. T.; Yin, Y. X.; Han, X. G. et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117728.

    CAS  Google Scholar 

  5. Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

    CAS  Google Scholar 

  6. Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F.; Cui, H.; Zhao, Y. Q.; Cao, M. H. Carbon-based materials for fast charging lithiumion batteries. Carbon 2021, 183, 721–734.

    CAS  Google Scholar 

  7. Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

    CAS  Google Scholar 

  8. Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Naion battery anode. Adv. Energy Mater. 2018, 8, 1800855.

    Google Scholar 

  9. Qian, J.; Wu, F.; Ye, Y. S.; Zhang, M. L.; Huang, Y. X.; Xing, Y.; Qu, W.; Li, L.; Chen, R. J. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater. 2018, 8, 1703159.

    Google Scholar 

  10. Wang, M. Y.; Zhao, X. X.; Guo, J. Z.; Nie, X. J.; Gu, Z. Y.; Yang, X.; Wu, X. L. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3−x(P2O7)x cathode material. Green Energy Environ. 2022, 7, 763–771.

    CAS  Google Scholar 

  11. Cheng, Z. W.; Zhao, B.; Guo, Y. J.; Yu, L. Z.; Yuan, B. H.; Hua, W. B.; Yin, Y. X.; Xu, S. L.; Xiao, B.; Han, X. G. et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103461.

    CAS  Google Scholar 

  12. Gu, Z. Y.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Zheng, X. Y.; Li, W. H.; Sun, Z. H.; Liang, H. J.; Wu, X. L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, 2110108.

    CAS  Google Scholar 

  13. Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

    CAS  Google Scholar 

  14. Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

    CAS  Google Scholar 

  15. Xie, F.; Xu, Z.; Guo, Z. Y.; Lu, Y. X.; Chen, L. Q.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries—quo vadis? Sci. China Chem. 2021, 64, 1679–1692.

    CAS  Google Scholar 

  16. Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Prog. Energy Combust. Sci. 2021, 87, 100929.

    Google Scholar 

  17. Xu, Z. H.; Du, S. L.; Yi, Z. Y.; Han, J. C.; Lai, C. L.; Xu, Y. F.; Zhou, X. S. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 11410–11417.

    CAS  Google Scholar 

  18. Marino, C.; Cabanero, J.; Povia, M.; Villevieille, C. Biowaste lignin-based carbonaceous materials as anodes for Na-ion batteries. J. Electrochem. Soc. 2018, 165, A1400–A1408.

    CAS  Google Scholar 

  19. Feng, Y. M.; Tao, L.; Zheng, Z. F.; Huang, H. B.; Lin, F. Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. Energy Storage Mater. 2020, 31, 274–309.

    Google Scholar 

  20. Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.

    CAS  Google Scholar 

  21. Wang, P.; Zhang, G.; Wei, X. Y.; Liu, R.; Gu, J. J.; Cao, F. F. Bioselective synthesis of a porous carbon collector for high-performance sodium-metal anodes. J. Am. Chem. Soc. 2021, 143, 3280–3283.

    CAS  Google Scholar 

  22. Zhu, H. L.; Shen, F.; Luo, W.; Zhu, S. Z.; Zhao, M. H.; Natarajan, B.; Dai, J. Q.; Zhou, L. H.; Ji, X. L.; Yassar, R. S. et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 2017, 33, 37–44.

    CAS  Google Scholar 

  23. Feng, Y. M.; Tao, L.; He, Y. H.; Jin, Q.; Kuai, C. G.; Zheng, Y. W.; Li, M. Q.; Hou, Q. P.; Zheng, Z. F.; Lin, F. et al. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 2019, 7, 26954–26965.

    CAS  Google Scholar 

  24. Alvin, S.; Chandra, C.; Kim, J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 2021, 411, 128490.

    CAS  Google Scholar 

  25. Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Xu, X.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S.; Yu, G. H. Low-tortuosity thick electrodes with active materials gradient design for enhanced energy storage. ACS Nano 2022, 16, 4805–4812.

    CAS  Google Scholar 

  26. Zhao, Z. D.; Sun, M. Q.; Chen, W. J.; Liu, Y.; Zhang, L.; Dongfang, N. C.; Ruan, Y. B.; Zhang, J. J.; Wang, P.; Dong, L. et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196.

    Google Scholar 

  27. Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.

    Google Scholar 

  28. Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. W.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.

    Google Scholar 

  29. Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

    CAS  Google Scholar 

  30. Wang, P.; Ye, H.; Yin, Y. X.; Chen, H.; Bian, Y. B.; Wang, Z. R.; Cao, F. F.; Guo, Y. G. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 2019, 31, 1805134.

    Google Scholar 

  31. Cheng, J.; Gu, J. J.; Tao, W.; Wang, P.; Liu, L.; Wang, C. Y.; Li, Y. K.; Feng, X. H.; Qiu, G. H.; Cao, F. F. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water. Bioresour. Technol. 2019, 294, 122149.

    CAS  Google Scholar 

  32. Wang, P. F.; Yao, H. R.; Liu, X. Y.; Yin, Y. X.; Zhang, J. N.; Wen, Y.; Yu, X. Q.; Gu, L.; Guo, Y. G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018.

    Google Scholar 

  33. Sun, N.; Guan, Z.; Liu, Y. W.; Cao, Y. L.; Zhu, Q. Z.; Liu, H.; Wang, Z. X.; Zhang, P.; Xu, B. Extended “adsoprtion-insertion” model: A new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 2019, 9, 1901351.

    Google Scholar 

  34. Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Wang, X. T.; Zhao, X. X.; Li, W. H.; Yu, H. Y.; Wu, X. L. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 2021, 15, 925–932.

    Google Scholar 

  35. Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

    CAS  Google Scholar 

  36. Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

    Google Scholar 

  37. Wang, P.; Zhang, G.; Li, M. Y.; Yin, Y. X.; Li, J. Y.; Li, G.; Wang, W. P.; Peng, W.; Cao, F. F.; Guo, Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020.

    CAS  Google Scholar 

  38. Beda, A.; Rabuel, F.; Morcrette, M.; Knopf, S.; Taberna, P. L.; Simon, P.; Ghimbeu, C. M. Hard carbon key properties allow for the achievement of high coulombic efficiency and high volumetric capacity in Na-ion batteries. J. Mater. Chem. A 2021, 9, 1743–1758.

    CAS  Google Scholar 

  39. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Google Scholar 

  40. Zhang, J.; Wang, D. W.; Lv, W.; Qin, L.; Niu, S. Z.; Zhang, S. W.; Cao, T. F.; Kang, F. Y.; Yang, Q. H. Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges. Adv. Energy Mater. 2018, 8, 1801361.

    Google Scholar 

  41. Jache, M. S. B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

    CAS  Google Scholar 

  42. Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

    Google Scholar 

  43. Zhang, N.; Liu, Q.; Chen, W. L.; Wan, M.; Li, X. C.; Wang, L. L.; Xue, L. H.; Zhang, W. X. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J. Power Sources 2018, 378, 331–337.

    CAS  Google Scholar 

  44. Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Li, W. H.; Xi, X. T.; Yang, X.; Liang, H. J.; Feng, X.; Wu, X. L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125.

    CAS  Google Scholar 

  45. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

    CAS  Google Scholar 

  46. Wang, Q. Q.; Zhu, X. S.; Liu, Y. H.; Fang, Y. Y.; Zhou, X. S.; Bao, J. C. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658–666.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA2400400), the National Natural Science Foundation of China (Nos. 22109058, 22122902, 22075299, and 21975091), the Fundamental Research Funds for the Central Universities of China (No. 20230614), the Jiangxi Provincial Education Department (No. GJJ200338), the Open Fund of Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage (No. SECES2003), and Beijing Natural Science Foundation (No. 2222089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Xia Yin or Fei-Fei Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Guo, YJ., Chen, WP. et al. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 16, 3832–3838 (2023). https://doi.org/10.1007/s12274-022-4708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4708-5

Keywords

Navigation