Skip to main content
Log in

Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of a general regulatory strategy for efficient overall water splitting remains a challenging task. Herein, a simple, cost-fairness, and general fluorination strategy is developed to realize surface reconstruction, heteroatom doping, and vacancies engineering over cobalt phosphide (CoP) for acquiring high-performance bifunctional electrocatalysts. Specifically, the surface of CoP nanoarrays (NAs) becomes rougher, meanwhile F doped into CoP lattice and creating amounts of P vacancies by fluorination, which caused the increase of active sites and regulation of charge distribution, resulting the excellent electrocatalyst performance of F-CoP NAs/copper foam (CF). The optimized F-CoP NAs/CF delivers a lower overpotential of only 35 mV at 10 mA·cm−2 for hydrogen evolution reaction (HER) and 231 mV at 50 mA·cm−2 for oxygen evolution reaction (OER), and the corresponding overall water splitting requires only 1.48 V cell voltage at 10 mA·cm−2, which are superior to the most state-of-the-art reported electrocatalysts. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, R. Q.; Wan, X. Y.; Chen, B. L.; Cao, R. Y.; Ji, Q. H.; Deng, J.; Qu, K. G.; Wang, X. B.; Zhu, Y. C. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 2021, 409, 128240.

    Article  CAS  Google Scholar 

  2. Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

    Article  Google Scholar 

  3. Feng, L. L.; Li, S. N.; He, D. Y.; Cao, L. Y.; Li, G. D.; Guo, P. H.; Huang, J. F. Heterostructured VN/Mo2C nanoparticles as highly efficient pH-universal electrocatalysts toward the hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2021, 9, 15202–15211.

    Article  CAS  Google Scholar 

  4. Wei, P.; Sun, X. P.; Wang, M. H.; Xu, J. H.; He, Z. M.; Li, X. G.; Cheng, F. Y.; Xu, Y.; Li, Q.; Han, J. T. et al. Construction of an N-decorated carbon-encapsulated W2C/WP heterostructure as an efficient electrocatalyst for hydrogen evolution in both alkaline and acidic media. ACS Appl. Mater. Interfaces 2021, 13, 53955–53964.

    Article  CAS  Google Scholar 

  5. Bellani, S.; Antognazza, M. R.; Bonaccorso, F. Carbon-based photocathode materials for solar hydrogen production. Adv. Mater. 2019, 31, 1801446.

    Article  Google Scholar 

  6. Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

    Article  Google Scholar 

  7. Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J. J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L. B.; Diao, G. W. et al. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2021, 31, 2106147.

    Article  CAS  Google Scholar 

  8. Zhang, J. T.; Zhang, Z.; Ji, Y. F.; Yang, J. D.; Fan, K.; Ma, X. Z.; Wang, C.; Shu, R. Y.; Chen, Y. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl. Catal. B Environ. 2021, 282, 119609.

    Article  CAS  Google Scholar 

  9. Sun, J.; Du, L.; Sun, B. Y.; Han, G. K.; Ma, Y. L.; Wang, J. J.; Huo, H.; Du, C. Y.; Yin, G. P. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: The optimized eg electronic structures by manganese dopant. ACS Appl. Mater. Interfaces 2020, 12, 24717–24725.

    Article  CAS  Google Scholar 

  10. Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

    Article  CAS  Google Scholar 

  11. Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat Commun. 2021, 12, 1376.

    Article  CAS  Google Scholar 

  12. Qu, G. X.; Wu, T. L.; Yu, Y. N.; Wang, Z. K.; Zhou, Y.; Tang, Z. D.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965.

    Article  CAS  Google Scholar 

  13. Lin, C.; Wang, P. Y.; Jin, H. H.; Zhao, J. H.; Chen, D.; Liu, S. L.; Zhang, C. T.; Mu, S. C. An iron-doped cobalt phosphide nano-electrocatalyst derived from a metal-organic framework for efficient water splitting. Dalton Trans. 2019, 48, 16555–16561.

    Article  CAS  Google Scholar 

  14. Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117893.

    Article  CAS  Google Scholar 

  15. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 2020, 32, 2002168.

    Article  CAS  Google Scholar 

  16. Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

    Article  CAS  Google Scholar 

  17. Zhang, G. W.; Wang, B.; Bi, J. L.; Fang, D. Q.; Yang, S. C. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 5769–5778.

    Article  CAS  Google Scholar 

  18. Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

    Article  CAS  Google Scholar 

  19. Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

    Article  CAS  Google Scholar 

  20. Lu, X. Y.; Yim, W. L.; Suryanto, B. H.; R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907.

    Article  CAS  Google Scholar 

  21. Pande, S.; Huang, W.; Shao, N.; Wang, L. M.; Khetrapal, N.; Mei, W. N.; Jian, T.; Wang, L. S.; Zeng, X. C. Structural evolution of core-shell gold nanoclusters: Aun(n = 42–50). ACS Nano 2016, 10, 10013–10022.

    Article  CAS  Google Scholar 

  22. Liu, Z. H.; Tan, H.; Xin, J. P.; Duan, J. Z.; Su, X. W.; Hao, P.; Xie, J. F.; Zhan, J.; Zhang, J.; Wang, J. J. et al. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 3699–3706.

    Article  CAS  Google Scholar 

  23. Xu, T. T.; Yang, L.; Li, J.; Usoltseva, N.; An, V.; Jin, X.; Zhang, C.; Zhang, X. L.; Liu, B. D. NH4F-induced morphology control of CoP nanostructures to enhance the hydrogen evolution reaction. Inorg. Chem. 2021, 60, 10781–10790.

    Article  CAS  Google Scholar 

  24. Sun, Y. K.; Liu, T.; Li, Z. J.; Meng, A. L.; Li, G. C.; Wang, L.; Li, S. X. Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2022, 433, 133684.

    Article  CAS  Google Scholar 

  25. Zha, M.; Pei, C. G.; Wang, Q.; Hu, G. Z.; Feng, L. G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. J. Energy Chem. 2020, 47, 166–171.

    Article  Google Scholar 

  26. Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4179-8.

  27. Li, M.; Wang, S. L.; Wang, X. Z.; Tian, X. L.; Wu, X.; Zhou, Y. T.; Hua, G. Z.; Feng, L. G. Structure evolution from Fe2Ni MIL MOF to carbon confined O-doped FeNi/FeF2 via partial fluorination for improved oxygen evolution reaction. Chem. Eng. J. 2022, 442, 136165.

    Article  CAS  Google Scholar 

  28. Liu, Z.; Liu, H.; Gu, X. C.; Feng, L. G. Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem. Eng. J. 2020, 397, 125500.

    Article  CAS  Google Scholar 

  29. Anjum, M. A. R.; Okyay, M. S.; Kim, M.; Lee, M. H.; Park, N.; Lee, J. S. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 2018, 53, 286–295.

    Article  CAS  Google Scholar 

  30. Men, Y. N.; Li, P.; Yang, F. L.; Cheng, G. Z.; Chen, S. L.; Luo, W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 253, 21–27.

    Article  CAS  Google Scholar 

  31. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Article  Google Scholar 

  32. He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Lett. 2018, 3, 1373–1380.

    Article  CAS  Google Scholar 

  33. Zhou, X. C.; Gao, H.; Wang, Y. F.; Liu, Z.; Lin, J. Q.; Ding, Y. P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. J. Mater. Chem. A 2018, 6, 14939–14948.

    Article  CAS  Google Scholar 

  34. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  36. Xu, K.; Sun, Y. Q.; Li, X. L.; Zhao, Z. H.; Zhang, Y. Q.; Li, C. C.; Fan, H. J. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity. ACS Materials Lett. 2020, 2, 736–743.

    Article  CAS  Google Scholar 

  37. Yuan, G. J.; Bai, J. L.; Zhang, L.; Chen, X.; Ren, L. L. The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Appl. Catal. B Environ. 2021, 284, 119693.

    Article  CAS  Google Scholar 

  38. Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

    Article  CAS  Google Scholar 

  39. Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.

    Article  CAS  Google Scholar 

  40. Zhou, G. Y.; Li, M.; Li, Y. L.; Dong, H.; Sun, D. M.; Liu, X. E.; Xu, L.; Tian, Z. Q.; Tang, Y. W. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 2020, 30, 1905252.

    Article  CAS  Google Scholar 

  41. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core—shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  Google Scholar 

  42. Tan, Y.; Che, Q. J.; Li, Q. Constructing double-layer CoP/CeO2-FeOxH hybrid catalysts for alkaline and neutral water splitting. ACS Sustainable Chem. Eng. 2021, 9, 11981–11990.

    Article  CAS  Google Scholar 

  43. Liu, Z.; Yu, X.; Xue, H. G.; Feng, L. G. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 13242–13248.

    Article  CAS  Google Scholar 

  44. Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

    Article  CAS  Google Scholar 

  45. Liu, H. T.; Guan, J. Y.; Yang, S. X.; Yu, Y. H.; Shao, R.; Zhang, Z. P.; Dou, M. L.; Wang, F.; Xu, Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv Mater. 2020, 32, 2003649.

    Article  CAS  Google Scholar 

  46. Fang, H. Y.; Huang, T. Z.; Sun, Y.; Kang, B. T.; Liang, D.; Yao, S.; Yu, J. M.; Dinesh, M. M.; Wu, S.; Lee, J. Y. et al. Metal-organic framework-derived core—shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. J Catal. 2019, 371, 185–195.

    Article  CAS  Google Scholar 

  47. Li, B. L.; Li, Z. S.; Pang, Q.; Zhang, J. Z. Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chem. Eng. J. 2020, 401, 126045.

    Article  CAS  Google Scholar 

  48. Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Li, P.; Sun, B.; Gao, X. C.; Yan, K.; Liu, H.; Duan, Y.; Gao, M. R. et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 2020, 71, 104652.

    Article  CAS  Google Scholar 

  49. Ouyang, Y. X.; Ling, C. Y.; Chen, Q.; Wang, Z. L.; Shi, L.; Wang, J. L. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 2016, 28, 4390–4396.

    Article  CAS  Google Scholar 

  50. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

  51. Chang, Y.; Cheng, Y.; Feng, Y. L.; Li, K.; Jian, H.; Zhang, H. Y. Upshift of the d band center toward the fermi level for promoting silver ion release, bacteria inactivation, and wound healing of alloy silver nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 12224–12231.

    Article  CAS  Google Scholar 

  52. Su, L. X.; Gong, D.; Yao, N.; Li, Y. B.; Li, Z.; Luo, W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2106156.

    Article  CAS  Google Scholar 

  53. Cheng, Y. C.; Fan, X.; Liao, F.; Lu, S. K.; Li, Y. Y.; Liu, L. B.; Li, Y. Q.; Lin, H. P.; Shao, M. W.; Lee, S. T. Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy 2017, 39, 284–290.

    Article  CAS  Google Scholar 

  54. Quan, L.; Li, S. H.; Zhao, Z. P.; Liu, J. Q.; Ran, Y.; Cui, J. Y.; Lin, W.; Yu, X. L.; Wang, L.; Zhang, Y. H. et al. Hierarchically assembling CoFe prussian blue analogue nanocubes on CoP nanosheets as highly efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.

    Article  CAS  Google Scholar 

  55. Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Xia, W.; Chen, T.; Bando, Y.; Kang, Y. M.; Hossain, M. S. A.; Sugahara, Y. et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 2020, 14, 4141–4152.

    Article  CAS  Google Scholar 

  56. Guan, S. D.; Fu, X. L.; Lao, Z. Z.; Jin, C. H.; Peng, Z. J. NiS-MoS2 hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustain. Energy Fuels 2019, 3, 2056–2066.

    Article  CAS  Google Scholar 

  57. Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

    Article  CAS  Google Scholar 

  58. Qian, Y. T.; Yu, J. M.; Zhang, Y.; Zhang, F. F.; Kang, Y. B.; Su, C. L.; Shi, H.; Kang, D. J.; Pang, H. Interfacial microenvironment modulation enhancing catalytic kinetics of binary metal sulfides heterostructures for advanced water splitting electrocatalysts. Small Methods 2022, 6, 2101186.

    Article  CAS  Google Scholar 

  59. Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work reported here was supported by the National Natural Science Foundation of China (Nos. 52072196, 52002199, 52002200, and 52102106), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), the Natural Science Foundation of Shandong Province (Nos. ZR2019BEM042 and ZR2020QE063), the Innovation and Technology Program of Shandong Province (No. 2020KJA004), and the Taishan Scholars Program of Shandong Province (No. ts201511034). We express our grateful thanks to them for their financial support. The authors want to thank Shiyanjia Lab for the support of DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan Meng or Zhenjiang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Sun, W., Chen, L. et al. Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays. Nano Res. 16, 228–238 (2023). https://doi.org/10.1007/s12274-022-4702-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4702-y

Keywords

Navigation