Skip to main content
Log in

Green functional carbon dots derived from herbal medicine ameliorate blood—brain barrier permeability following traumatic brain injury

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To repair the blood—brain barrier (BBB) after traumatic brain injury (TBI) remains a multidisciplinary challenge. No first-line drugs are available. Here, we reported a novel and non-toxic functional negative-charged carbon dots (CDs) generated from green Semen pruni persicae and Carthamus tinctorius L. (TH-CDs) through a hydrothermal synthesis without any organic solvent. The surface of TH-CDs retained part functional groups of active pharmacophores from both drugs. TH-CDs could improve the neurological function, brain edema, neuronal damage, and the BBB permeability by tail vein injection of mice models without systemic toxicity. Furthermore, higher expression of tight junction proteins claudin 5 and ZO-1 was observed after TH-CDs administration, which may be due to the electrostatic interaction between TH-CDs and claudin 5. Our study highlights an inexpensive, green, non-toxic, and intravenous functional TH-CD, which represents a potential TBI treatment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, J. Y.; Gao, G. Y.; Feng, J. F.; Mao, Q.; Chen, L. G.; Yang, X. F.; Liu, J. F.; Wang, Y. H.; Qiu, B. H.; Huang, X. J. Traumatic brain injury in china. Lancet Neurol. 2019, 18, 286–295.

    Article  Google Scholar 

  2. Obermeier, B.; Daneman, R.; Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013, 19, 1584–1596.

    Article  CAS  Google Scholar 

  3. Martin, M.; Vermeiren, S.; Bostaille, N.; Eubelen, M.; Spitzer, D.; Vermeersch, M.; Profaci, C. P.; Pozuelo, E.; Toussay, X.; Raman-Nair, J. et al. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 2022, 375, eabm4459.

    Article  CAS  Google Scholar 

  4. Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 2010, 6, 393–403.

    Article  CAS  Google Scholar 

  5. Strbian, D.; Durukan, A.; Pitkonen, M.; Marinkovic, I.; Tatlisumak, E.; Pedrono, E.; Abo-Ramadan, U.; Tatlisumak, T. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 2008, 153, 175–181.

    Article  CAS  Google Scholar 

  6. Zhang, M. L.; Cheng, J. J.; Hu, J.; Luo, J.; Zhang, Y.; Lu, F.; Kong, H.; Qu, H. H.; Zhao, Y. Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J. Nanobiotechnol. 2021, 19, 105.

    Article  CAS  Google Scholar 

  7. Lindblad, C.; Pin, E.; Just, D.; Al Nimer, F.; Nilsson, P.; Bellander, B. M.; Svensson, M.; Piehl, F.; Thelin, E. P. Fluid proteomics of CSF and serum reveal important neuroinflammatory proteins in blood-brain barrier disruption and outcome prediction following severe traumatic brain injury: A prospective, observational study. Crit. Care 2021, 25, 103.

    Article  Google Scholar 

  8. Neuwelt, E.; Abbott, N. J.; Abrey, L.; Banks, W. A.; Blakley, B.; Davis, T.; Engelhardt, B.; Grammas, P.; Nedergaard, M.; Nutt, J. et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7, 84–96.

    Article  CAS  Google Scholar 

  9. Kingwell, K. New targets for drug delivery across the BBB. Nat. Rev. Drug Discov. 2016, 15, 84–85.

    Article  CAS  Google Scholar 

  10. Masserini, M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013, 2013, 238428.

    Article  Google Scholar 

  11. Wen, H. J.; Watry, D. D.; Marcondes, M. C. G.; Fox, H. S. Selective decrease in paracellular conductance of tight junctions: Role of the first extracellular domain of claudin-5. Mol. Cell. Biol. 2004, 24, 8408–8417.

    Article  CAS  Google Scholar 

  12. Matter, K.; Balda, M. S. Holey barrier: Claudins and the regulation of brain endothelial permeability. J. Cell Biol. 2003, 161, 459–460.

    Article  CAS  Google Scholar 

  13. Ohtsuki, S.; Sato, S.; Yamaguchi, H.; Kamoi, M.; Asashima, T.; Terasaki, T. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J. Cell. Physiol. 2007, 210, 81–86.

    Article  CAS  Google Scholar 

  14. Citi, S. Cell biology: Tight junctions as biomolecular condensates. Curr. Biol. 2020, 30, R83–R86.

    Article  CAS  Google Scholar 

  15. Lv, Y. N.; Fu, L. S. The potential mechanism for hydroxysafflor yellow an attenuating blood-brain barrier dysfunction via tight junction signaling pathways excavated by an integrated serial affinity chromatography and shotgun proteomics analysis approach. Neurochem. Int. 2018, 112, 38–48.

    Article  CAS  Google Scholar 

  16. Irudayanathan, F. J.; Nangia, S. Paracellular gatekeeping: What does it take for an ion to pass through a tight junction pore? Langmuir 2020, 36, 6757–6764.

    Article  CAS  Google Scholar 

  17. Zheng, Q.; Peng, M. Z.; Liu, Z.; Li, S. Y.; Han, R. C.; Ouyang, H.; Fan, Y. B.; Pan, C. F.; Hu, W. G.; Zhai, J. Y. et al. Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Sci. Adv. 2021, 7, eabe7738.

    Article  CAS  Google Scholar 

  18. Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

    Article  CAS  Google Scholar 

  19. Chizhik, A. M.; Stein, S.; Dekaliuk, M. O.; Battle, C.; Li, W. X.; Huss, A.; Platen, M.; Schaap, I. A. T.; Gregor, I.; Demchenko, A. P. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 2016, 16, 237–242.

    Article  CAS  Google Scholar 

  20. Weiss, M.; Fan, J. H.; Claudel, M.; Sonntag, T.; Didier, P.; Ronzani, C.; Lebeau, L.; Pons, F. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J. Nanobiotechnol. 2021, 19, 5.

    Article  CAS  Google Scholar 

  21. Lu, S. S.; Guo, S. S.; Xu, P. X.; Li, X. R.; Zhao, Y. M.; Gu, W.; Xue, M. Hydrothermal synthesis of nitrogen-doped carbon dots with realtime live-cell imaging and blood-brain barrier penetration capabilities. Int. J. Nanomed. 2016, 11, 6325–6336.

    Article  CAS  Google Scholar 

  22. Zhang, W.; Sigdel, G.; Mintz, K. J.; Seven, E. S.; Zhou, Y.; Wang, C.; Leblanc, R. M. Carbon dots: A future blood-brain barrier penetrating nanomedicine and drug nanocarrier. Int. J. Nanomed. 2021, 16, 5003–5016.

    Article  Google Scholar 

  23. Lou, Y.; Hao, X. Y.; Liao, L.; Zhang, K. Y.; Chen, S. P.; Li, Z. Y.; Ou, J.; Qin, A. M.; Li, Z. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Select. 2021, 2, 1117–1145.

    Article  CAS  Google Scholar 

  24. Tong, T.; Hu, H. W.; Zhou, J. W.; Deng, S. F.; Zhang, X. T.; Tang, W. T.; Fang, L. R.; Xiao, S. B.; Liang, J. G. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 2020, 16, 1906206.

    Article  CAS  Google Scholar 

  25. Luo, W. K.; Zhang, L. L.; Yang, Z. Y.; Guo, X. H.; Wu, Y.; Zhang, W.; Luo, J. K.; Tang, T.; Wang, Y. Herbal medicine derived carbon dots: Synthesis and applications in therapeutics, bioimaging and sensing. J. Nanobiotechnol. 2021, 19, 320.

    Article  CAS  Google Scholar 

  26. McCrea, M. A.; Giacino, J. T.; Barber, J.; Temkin, N. R.; Nelson, L. D.; Levin, H. S.; Dikmen, S.; Stein, M.; Bodien, Y. G.; Boase, K. et al. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study. JAMA Neurol. 2021, 78, 982–992.

    Article  Google Scholar 

  27. Fu, C. Y.; Wu, Q.; Zhang, Z. M.; Xia, Z. A.; Liu, Z. Y.; Lu, H. M.; Wang, Y.; Huang, G. Development of a sensitive and rapid UHPLC-MS/MS method for simultaneous quantification of nine compounds in rat plasma and application in a comparative pharmacokinetic study after oral administration of Xuefu Zhuyu decoction and nimodipine. Biomed. Chromatogr. 2020, 34, e4872.

    Article  CAS  Google Scholar 

  28. Zhong, Y. Y.; Luo, J. K.; Tang, T.; Li, P. F.; Liu, T.; Cui, H. J.; Wang, Y.; Huang, Z. B. Exploring pharmacological mechanisms of Xuefu Zhuyu decoction in the treatment of traumatic brain injury via a network pharmacology approach. Evid. Based Complement Altern. Med. 2018, 2018, 8916938.

    Article  Google Scholar 

  29. Zhao, S. Y.; Chen, X. R.; Zhang, C. X.; Zhao, P. T.; Ragauskas, A. J.; Song, X. P. Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications. ACS Appl. Mater. Interfaces 2021, 13, 61565–61577.

    Article  CAS  Google Scholar 

  30. Wang, Z. L.; Zhang, Y.; Yin, J.; Li, M. X.; Luo, H.; Yang, Y. Q.; Xu, X.; Yong, Q.; Wang, S. F. An easily available camphor-derived ratiometric fluorescent probe with AIE feature for sequential Ga3+ and ATP sensing in a near-perfect aqueous media and its bio-imaging in living cells and mice. Sens. Actuators B:Chem. 2020, 320, 128249.

    Article  CAS  Google Scholar 

  31. Wang, Y.; Fan, X. G.; Tang, T.; Fan, R.; Zhang, C. H.; Huang, Z. B.; Peng, W. J.; Gan, P. P.; Xiong, X. G.; Huang, W. et al. Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of nadph oxidase/ROS/ERK/MMP-9 signaling pathway. Sci. Rep. 2016, 6, 37098.

    Article  CAS  Google Scholar 

  32. Li, T.; Hu, E.; Li, P. F.; Yang, Z. Y.; Wu, Y.; Ding, R. Q.; Zhu, X. F.; Tang, T.; Wang, Y. Metabolomics deciphers potential targets of Xuefu Zhuyu decoction against traumatic brain injury in rat. Front. Pharmacol. 2020, 11, 559618.

    Article  CAS  Google Scholar 

  33. Li, W.; Wang, S. C.; Li, Y.; Ma, C. H.; Huang, Z. H.; Wang, C. S.; Li, J.; Chen, Z. J.; Liu, S. X. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr. Polym. 2017, 175, 7–17.

    Article  CAS  Google Scholar 

  34. Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.

    Article  CAS  Google Scholar 

  35. Wang, Y. H.; Xie, Z. M.; Wang, X. H.; Peng, X.; Zheng, J. P. Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes. J. Nanobiotechnol. 2021, 19, 260.

    Article  CAS  Google Scholar 

  36. Jiang, Q. J.; Liu, L.; Li, Q. Y.; Cao, Y.; Chen, D.; Du, Q. S.; Yang, X. B.; Huang, D. P.; Pei, R. J.; Chen, X. et al. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. J. Nanobiotechnol. 2021, 19, 64.

    Article  CAS  Google Scholar 

  37. Liu, Y. S.; Zhao, Y. N.; Zhang, Y. Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens. Actuators B:Chem. 2014, 196, 647–652.

    Article  CAS  Google Scholar 

  38. He, M. Q.; Zhang, J.; Wang, H.; Kong, Y. R.; Xiao, Y. M.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett. 2018, 13, 175.

    Article  Google Scholar 

  39. Tang, W.; Fan, W. P.; Lau, J.; Deng, L. M.; Shen, Z. Y.; Chen, X. Y. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014.

    Article  CAS  Google Scholar 

  40. Lin, C. J.; Chang, L.; Chu, H. W.; Lin, H. J.; Chang, P. C.; Wang, R. Y. L.; Unnikrishnan, B.; Mao, J. Y.; Chen, S. Y.; Huang, C. C. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 2019, 15, 1902641.

    Article  CAS  Google Scholar 

  41. Zhang, Y.; Wang, S. N.; Lu, F.; Zhang, M. L.; Kong, H.; Cheng, J. J.; Luo, J.; Zhao, Y.; Qu, H. H. The neuroprotective effect of pretreatment with carbon dots from Crinis carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J. Nanobiotechnol. 2021, 19, 257.

    Article  CAS  Google Scholar 

  42. Đorđević, L.; Haines, P.; Cacioppo, M.; Arcudi, F.; Scharl, T.; Cadranel, A.; Guldi, D. M.; Prato, M. Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Mater. Chem. Front. 2020, 4, 3640–3648.

    Article  Google Scholar 

  43. Kong, B.; Yang, T.; Cheng, F.; Qian, Y.; Li, C. M.; Zhan, L.; Li, Y. F.; Zou, H. Y.; Huang, C. Z. Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J. Colloid Interface Sci. 2022, 611, 545–553.

    Article  CAS  Google Scholar 

  44. Zhang, X. Y.; Li, Y.; Wang, Y. Y.; Liu, X. Y.; Jiang, F. L.; Liu, Y.; Jiang, P. Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol. J. Colloid Interface Sci. 2022, 611, 255–264.

    Article  CAS  Google Scholar 

  45. Gao, L. F.; Wang, L. D.; Kuklin, A. V.; Gao, J.; Yin, S. C.; Ågren, H.; Zhang, H. A facile approach for elemental-doped carbon quantum dots and their application for efficient photodetectors. Small 2021, 17, 2105683.

    Article  CAS  Google Scholar 

  46. Liu, J. J.; Geng, Y. J.; Li, D. W.; Yao, H.; Huo, Z. P.; Li, Y. F.; Zhang, K.; Zhu, S. J.; Wei, H. T.; Xu, W. Q. et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020, 32, 1906641.

    Article  CAS  Google Scholar 

  47. Qiu, T. Y.; Yang, L.; Xiang, Y. E.; Ye, Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 2021, 5, 2100188.

    Article  CAS  Google Scholar 

  48. Li, S. H.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X. C.; Chen, Z. M.; Bao, Y. M. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020, 4, 704–716.

    Article  CAS  Google Scholar 

  49. Dong, C.; Xu, M. S.; Wang, S. N.; Ma, M. H.; Akakuru, O. U.; Ding, H. Z.; Wu, A. G.; Zha, Z. B.; Wang, X. M.; Bi, H. Fluorescent carbon dots with excellent moisture retention capability for moisturizing lipstick. J. Nanobiotechnol. 2021, 19, 299.

    Article  CAS  Google Scholar 

  50. Vallan, L.; Urriolabeitia, E. P.; Ruipérez, F.; Matxain, J. M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A. M.; Maser, W. K. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 2018, 140, 12862–12869.

    Article  CAS  Google Scholar 

  51. Liu, H. J.; Lv, X. T.; Qian, J. C.; Li, H.; Qian, Y.; Wang, X. Y.; Meng, X. F.; Lin, W. C.; Wang, H. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano 2020, 14, 13304–13315.

    Article  CAS  Google Scholar 

  52. Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

    Article  CAS  Google Scholar 

  53. Liu, J. J.; Li, D. W.; Zhang, K.; Yang, M. X.; Sun, H. C.; Yang, B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 2018, 11, 1703919.

    Article  Google Scholar 

  54. Wu, H. J.; Zheng, J. W.; Xu, S. B.; Fang, Y. J.; Wu, Y. X.; Zeng, J. X.; Shao, A. W.; Shi, L. G.; Lu, J. N.; Mei, S. H. et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J. Neuroinflamm. 2021, 18, 2.

    Article  CAS  Google Scholar 

  55. Sawant-Pokam, P. A.; Vail, T. J.; Metcalf, C. S.; Maguire, J. L.; McKean, T. O.; McKean, N. O.; Brennan, K. C. Preventing neuronal edema increases network excitability after traumatic brain injury. J. Clin. Invest. 2020, 130, 6005–6020.

    Article  CAS  Google Scholar 

  56. Zou, Z. M.; Li, L.; Li, Q.; Zhao, P.; Zhang, K.; Liu, C. Y.; Cai, D. Z.; Maegele, M.; Gu, Z. T.; Huang, Q. B. The role of S100B/RAGE-enhanced ADAM17 activation in endothelial glycocalyx shedding after traumatic brain injury. J. Neuroinflamm. 2022, 19, 46.

    Article  CAS  Google Scholar 

  57. Liu, Z. H.; Chen, N. Y.; Tu, P. H.; Wu, C. T.; Chiu, S. C.; Huang, Y. C.; Lim, S. N.; Yip, P. K. DHA attenuates cerebral edema following traumatic brain injury via the reduction in blood-brain barrier permeability. Int. J. Mol. Sci. 2020, 21, 6291.

    Article  CAS  Google Scholar 

  58. Li, T.; Lu, X. M.; Zhang, M. R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater. 2022, 11, 268–282.

    Article  CAS  Google Scholar 

  59. Umeda, K.; Ikenouchi, J.; Katahira-Tayama, S.; Furuse, K.; Sasaki, H.; Nakayama, M.; Matsui, T.; Tsukita, S.; Furuse, M.; Tsukita, S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006, 126, 741–754.

    Article  CAS  Google Scholar 

  60. Nitta, T.; Hata, M.; Gotoh, S.; Seo, Y.; Sasaki, H.; Hashimoto, N.; Furuse, M.; Tsukita, S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 2003, 161, 653–660.

    Article  CAS  Google Scholar 

  61. Hawkins, B. T.; Davis, T. P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 2005, 57, 173–185.

    Article  CAS  Google Scholar 

  62. Willis, E. F.; MacDonald, K. P. A.; Nguyen, Q. H.; Garrido, A. L.; Gillespie, E. R.; Harley, S. B. R.; Bartlett, P. F.; Schroder, W. A.; Yates, A. G.; Anthony, D. C. et al. Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 2020, 180, 833–846.E16.

    Article  CAS  Google Scholar 

  63. Liu, L.; Duan, J. A.; Tang, Y. P.; Guo, J. M.; Yang, N. Y.; Ma, H. Y.; Shi, X. Q. Taoren-Honghua herb pair and its main components promoting blood circulation through influencing on hemorheology, plasma coagulation and platelet aggregation. J. Ethnopharmacol. 2012, 139, 381–387.

    Article  CAS  Google Scholar 

  64. Logsdon, A. F.; Lucke-Wold, B. P.; Turner, R. C.; Huber, J. D.; Rosen, C. L.; Simpkins, J. W. Role of microvascular disruption in brain damage from traumatic brain injury. Compr. Physiol. 2015, 5, 1147–1160.

    Article  Google Scholar 

  65. Liu, C.; Li, X.; Yang, H. G.; Mao, X. H.; Wang, J.; Gao, W. Y. Effect of natural β-glucosidase inhibitors in reducing toxicity of amygdalin in persicae semen. Phytother. Res. 2017, 31, 771–777.

    Article  CAS  Google Scholar 

  66. Hansen, S. F.; Lennquist, A. Carbon nanotubes added to the SIN list as a nanomaterial of very high concern. Nat. Nanotechnol. 2020, 15, 3–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81973665), the Science and Technology Innovation Program of Hunan Province (No. 2021RC3030), the Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts1028), and the Innovation-Driven Project of Central South University (No. 2020CX047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Electronic Supplementary Material

12274_2022_4616_MOESM1_ESM.pdf

Green functional carbon dots derived from herbal medicine ameliorate blood—brain barrier permeability following traumatic brain injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Zhang, L., Li, X. et al. Green functional carbon dots derived from herbal medicine ameliorate blood—brain barrier permeability following traumatic brain injury. Nano Res. 15, 9274–9285 (2022). https://doi.org/10.1007/s12274-022-4616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4616-8

Keywords

Navigation