Skip to main content
Log in

Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) indium arsenide (InAs) is promising for future electronic and optoelectronic applications such as high-performance nanoscale transistors, flexible and wearable devices, and high-sensitivity broadband photodetectors, and is advantageous for its heterogeneous integration with Si-based electronics. However, the synthesis of 2D InAs single crystals is challenging because of the nonlayered structure. Here we report the van der Waals epitaxy of 2D InAs single crystals, with their thickness down to 4.8 nm, and their lateral sizes up to ∼ 37 µm. The as-grown InAs flakes have high crystalline quality and are homogenous. The thickness can be tuned by growth time and temperature. Moreover, we explore the thickness-dependent optical properties of InAs flakes. Transports measurement reveals that 2D InAs possesses high conductivity and high carrier mobility. Our work introduces InAs to 2D materials family and paves the way for applying 2D InAs in high-performance electronics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317–323.

    Article  CAS  Google Scholar 

  2. Riel, H.; Wernersson, L. E.; Hong, M.; del Alamo, J. A. III-V compound semiconductor transistors—From planar to nanowire structures. MRS Bull. 2014, 39, 668–677.

    Article  CAS  Google Scholar 

  3. Li, D. P.; Lan, C. Y.; Manikandan, A.; Yip, S.; Zhou, Z. Y.; Liang, X. G.; Shu, L.; Chueh, Y. L.; Han, N.; Ho, J. C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664.

    Article  Google Scholar 

  4. Wang, X. Z.; Pan, D.; Sun, M.; Lyu, F. J.; Zhao, J. H.; Chen, Q. High-performance room-temperature UV-IR photodetector based on the InAs nanosheet and its wavelength- and intensity-dependent negative photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 26187–26195.

    Article  CAS  Google Scholar 

  5. Zhang, Y. Y.; Wu, J.; Aagesen, M.; Liu, H. Y. III-V nanowires and nanowire optoelectronic devices. J. Phys. D Appl. Phys. 2015, 48, 463001.

    Article  Google Scholar 

  6. Otnes, G.; Borgström, M. T. Towards high efficiency nanowire solar cells. Nano Today 2017, 12, 31–45.

    Article  CAS  Google Scholar 

  7. Li, Z. Y.; Tan, H. H.; Jagadish, C.; Fu, L. III-V semiconductor single nanowire solar cells: A review. Adv. Mater. Technol. 2018, 3, 1800005.

    Article  Google Scholar 

  8. Ko, H.; Takei, K.; Kapadia, R.; Chuang, S.; Fang, H.; Leu, P. W.; Ganapathi, K.; Plis, E.; Kim, H. S.; Chen, S. Y. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 2010, 468, 286–289.

    Article  CAS  Google Scholar 

  9. Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171.

    Article  CAS  Google Scholar 

  10. Chen, Y. X.; Liu, K. L.; Liu, J. X.; Lv, T. R.; Wei, B.; Zhang, T.; Zeng, M. Q.; Wang, Z. C.; Fu, L. Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 2018, 140, 16392–16395.

    Article  CAS  Google Scholar 

  11. Ben, J. W.; Liu, X. K.; Wang, C.; Zhang, Y. P.; Shi, Z. M.; Jia, Y. P.; Zhang, S. L.; Zhang, H.; Yu, W. J.; Li, D. B. et al. 2D III-nitride materials: Properties, growth, and applications. Adv. Mater. 2021, 33, 2006761.

    Article  CAS  Google Scholar 

  12. Liu, Y.; Guo, J.; Zhu, E. B.; Wang, P. Q.; Gambin, V.; Huang, Y.; Duan, X. F. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano 2019, 13, 847–854.

    Article  CAS  Google Scholar 

  13. Kim, T. W.; Kim, D. H.; del Alamo, J. A. Logic characteristics of 40 nm thin-channel InAs HEMTs. In Proceedings of the 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), Takamatsu, Japan, 2010, pp 1–4.

  14. Sarkar, D.; Tao, J.; Ahsan, R.; Yang, D. Z.; Orvis, T.; Weng, S. Z.; Greer, F.; Ravichandran, J.; Sideris, C.; Kapadia, R. Monolithic high-mobility InAs on oxide grown at low temperature. ACS Appl. Electron. Mater. 2020, 2, 1997–2002.

    Article  CAS  Google Scholar 

  15. Hjort, M.; Lehmann, S.; Knutsson, J.; Zakharov, A. A.; Du, Y. A.; Sakong, S.; Timm, R.; Nylund, G.; Lundgren, E.; Kratzer, P. et al. Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: Experiment and theory. ACS Nano 2014, 8, 12346–12355.

    Article  CAS  Google Scholar 

  16. Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

    Article  CAS  Google Scholar 

  17. Shen, L. F.; Yip, S.; Lan, C. Y.; Shu, L.; Li, D. P.; Zhou, Z. Y.; Wong, C. Y.; Pun, E. Y. B.; Ho, J. C. Enhanced negative photoconductivity in InAs nanowire phototransistors surface-modified with molecular monolayers. Adv. Mater. Interfaces 2018, 5, 1701104.

    Article  Google Scholar 

  18. Ram, M. S.; Persson, K. M.; Irish, A.; Jönsson, A.; Timm, R.; Wernersson, L. E. High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon. Nat. Electron. 2021, 4, 914–920.

    Article  CAS  Google Scholar 

  19. Takei, K.; Fang, H.; Kumar, S. B.; Kapadia, R.; Gao, Q.; Madsen, M.; Kim, H. S.; Liu, C. H.; Chueh, Y. L.; Plis, E. et al. Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett. 2011, 11, 5008–5012.

    Article  CAS  Google Scholar 

  20. Grim, J. Q.; Bracker, A. S.; Zalalutdinov, M.; Carter, S. G.; Kozen, A. C.; Kim, M.; Kim, C. S.; Mlack, J. T.; Yakes, M.; Lee, B. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 2019, 18, 963–969.

    Article  CAS  Google Scholar 

  21. Lu, H. Y.; Tian, S. C.; Tong, C. Z.; Wang, L. J.; Rong, J. M.; Liu, C. Y.; Wang, H.; Shu, S. L.; Wang, L. J. Extracting more light for vertical emission: High power continuous wave operation of 1.3-µm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light. Sci. Appl. 2019, 8, 108.

    Article  Google Scholar 

  22. Xu, T. F.; Wang, H. L.; Chen, X. Y.; Luo, M.; Zhang, L. L.; Wang, Y. M.; Chen, F. S.; Shan, C. X.; Yu, C. H. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires. Nanotechnology 2020, 31, 294004.

    Article  CAS  Google Scholar 

  23. Larsson, M. W.; Wagner, J. B.; Wallin, M.; Håkansson, P.; Fröberg, L. E.; Samuelson, L.; Wallenberg, L. R. Strain mapping in freestanding heterostructured wurtzite InAs/InP nanowires. Nanotechnology 2007, 18, 015504.

    Article  Google Scholar 

  24. Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

    Article  Google Scholar 

  25. Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

    Article  CAS  Google Scholar 

  26. Hang, Q. L.; Wang, F. D.; Carpenter, P. D.; Zemlyanov, D.; Zakharov, D.; Stach, E. A.; Buhro, W. E.; Janes, D. B. Role of molecular surface passivation in electrical transport properties of InAs nanowires. Nano Lett. 2008, 8, 49–55.

    Article  CAS  Google Scholar 

  27. Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.

    Article  Google Scholar 

  28. Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217–14223.

    Article  CAS  Google Scholar 

  29. Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 2021, 14, 1955–1960.

    Article  CAS  Google Scholar 

  30. Li, N. N.; Zhu, L. L.; Shang, H. H.; Wang, F.; Zhang, Y.; Yao, Y. Y.; Wang, J. J.; Zhan, X. Y.; Wang, F. M.; He, J. et al. Controlled synthesis and Raman study of a 2D antiferromagnetic p-type semiconductor: α-MnSe. Nanoscale 2021, 13, 6953–6964.

    Article  CAS  Google Scholar 

  31. Sahoo, P.; Tyagi, A. K.; Raj, B.; Dhara, S. Surface optical modes in semiconductor nanowires. In Nnoowires—Implementations and Applications; Hashim, A. A., Ed.; IntechOpen: London, 2011.

    Google Scholar 

  32. Sunny, A.; Balasubramanian, K. Raman spectral probe on size-dependent surface optical phonon modes and magnon properties of NiO nanoparticles. J. Phys. Chem. C 2020, 124, 12636–12644.

    Article  CAS  Google Scholar 

  33. Prasad, N.; Karthikeyan, B. A Raman spectral probe on polar w-ZnS nanostructures and surface optical phonon modes in nanowires. Nanoscale 2019, 11, 4948–4958.

    Article  CAS  Google Scholar 

  34. Chen, S. S.; Liu, H. T.; Chen, F. H.; Zhou, K.; Xue, Y. Z. Synthesis, transfer, and properties of layered FeTe2 nanocrystals. ACS Nano 2020, 14, 11473–11481.

    Article  CAS  Google Scholar 

  35. Habanyama, A. Interface control processes for Ni/Ge and Pd/Ge Schottky and Ohmic contact fabrication: Part one. In Advanced Material and Device Applications with Germanium; Lee, S., Ed.; IntechOpen: London, 2018.

    Google Scholar 

  36. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  38. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  39. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  40. Kokalj, A. XCrysDen—A new program for displaying crystalline structures and electron densities. J. Mol. Graphics Modell. 1999, 17, 176–179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2021YFA1401400), the start-up funds of Shanghai Jiao Tong University, the National Natural Science Foundation of China (Nos. 52103344, 52031014, 22022507, and 51973111), the National Key Research and Development Program of China (No. 2017YFA0206301), and Beijing National Laboratory for Molecular Sciences (No. BNLMS202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Yang, T., Jin, Z. et al. Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy. Nano Res. 15, 9954–9959 (2022). https://doi.org/10.1007/s12274-022-4543-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4543-8

Keywords

Navigation