Skip to main content
Log in

Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lead telluride (PbTe) is one of the reliable candidates for infrared (IR) optoelectronics with optimum band-gap as well as excellent photoelectric properties. Great interests had been paid on the growth and device applications with PbTe for the development of high-performance IR photodetectors especially those working in the near-infrared regime. Although a great deal of effort had been made to prepare PbTe nanostructures for miniaturized detectors, it is difficult to synthesize high-quality two-dimensional (2D) PbTe crystals due to its rock-salt non-layered structure. Herein, a facile strategy for controllable synthesis of ultrathin crystalline PbTe nanosheets by van der Waals epitaxy is reported. With an optimized growth temperature, which determines the morphology transit from triangular pyramid islands to regular square 2D planars, PbTe nanosheets in lateral size of tens of microns with thickness down to ~ 7 nm are achieved. Meanwhile, ultrasensitive near-infrared detectors (NIRDs) based on the as-grown 2D PbTe nanosheets have been demonstrated with an ultrahigh responsivity exceeding 3,847 A/W at the wavelength of 1,550 nm under room temperature. Our approach demonstrates that 2D PbTe nanosheets have great latent capacity of developing high-performance miniaturized IR optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleipool, Q. L.; Jongma, R. T.; Gloudemans, A. M. S.; Schrijver, H.; Lichtenberg, G. F.; Van Hees, R. M.; Maurellis, A. N.; Hoogeveen, R. W. M. In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors. Infrared Phys. Technol.2007, 50, 30–37.

    CAS  Google Scholar 

  2. Bhan, R. K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto Electron. Rev.2019, 27, 174–193.

    Google Scholar 

  3. Casalino, M.; Coppola, G.; Iodice, M.; Rendina, I.; Sirleto, L. Near-infrared sub-bandgap all-silicon photodetectors: State of the art and perspectives. Sensors2010, 10, 10571–10600.

    Google Scholar 

  4. Kim, J.; Ampadu, E. K.; Oh, E.; Choi, H.; Ahn, H. Y.; Cho, S. H.; Choi, W. J.; Byun, J. Y. Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes. Curr. Appl. Phys.2020, 20, 445–450.

    Google Scholar 

  5. Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small2015, 11, 2848–2855.

    CAS  Google Scholar 

  6. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano2015, 9, 9451–9469.

    CAS  Google Scholar 

  7. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.

    CAS  Google Scholar 

  8. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun.2018, 9, 5266.

    CAS  Google Scholar 

  9. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics2014, 8, 899–907.

    CAS  Google Scholar 

  10. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small2017, 13, 1700894.

    Google Scholar 

  11. Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics2016, 3, 2197–2210.

    CAS  Google Scholar 

  12. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol2009, 4, 839–843.

    CAS  Google Scholar 

  13. Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics2013, 7, 883–887.

    CAS  Google Scholar 

  14. Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small2018, 14, 1703293.

    Google Scholar 

  15. Dai, T. J.; Fan, X. D.; Ren, Y. X.; Hou, S.; Zhang, Y. Y.; Qian, L. X.; Li, Y. R.; Liu, X. Z. Layer-controlled synthesis of wafer-scale MoSe2 nanosheets for photodetector arrays. J. Mater. Sci.2018, 53, 8436–8444.

    CAS  Google Scholar 

  16. Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater.2013, 23, 5511–5517.

    Google Scholar 

  17. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett.2016, 16, 4648–4655.

    CAS  Google Scholar 

  18. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater.2014, 1, 025001.

    CAS  Google Scholar 

  19. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA2015, 112, 4523–4530.

    CAS  Google Scholar 

  20. Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy2020, 70, 104518.

    CAS  Google Scholar 

  21. Fürst, J.; Pascher, H.; Schwarzl, T.; Böberl, M.; Heiss, W.; Springholz, G.; Bauer, G. Midinfrared IV–VI vertical-cavity surface-emitting lasers with zero-, two-, and three-dimensional systems in the active regions. Appl. Phys. Lett.2002, 81, 208–210.

    Google Scholar 

  22. Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power. Appl. Phys. Lett.2009, 95, 241107.

    Google Scholar 

  23. Harris, J.; Ridley, B. High field transport in p type PbTe. J. Phys. C Solid State Phys.1972, 5, 2746–2756.

    CAS  Google Scholar 

  24. Ni, Y. H.; Zhang, Y. M.; Hong, J. M. Potentiostatic electrodeposition route for quick synthesis of featherlike PbTe dendrites: Influencing factors and shape evolution. Cryst. Growth Des.2011, 11, 2142–2148.

    CAS  Google Scholar 

  25. Bala, M.; Bhogra, A.; Khan, S. A.; Tripathi, T. S.; Tripathi, S. K.; Avasthi, D. K.; Asokan, K. Enhancement of thermoelectric power of PbTe thin films by Ag ion implantation. J. Appl. Phys.2017, 121, 215301.

    Google Scholar 

  26. Baghchesara, M. A.; Yousefi, R.; Cheraghizade, M.; Jamali-Sheini, F.; Saáedi, A.; Mahmmoudian, M. R. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale. Mater. Res. Bull.2016, 77, 131–137.

    CAS  Google Scholar 

  27. Gong, X. X.; Fei, G. T.; Fu, W. B.; Zhong, B. N.; Gao, X. D.; Zhang, L. D. Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time. Appl. Surf. Sci.2017, 404, 7–11.

    CAS  Google Scholar 

  28. Ma, S. S.; Li, K.; Xu, H. L.; Zhu, J. Q.; Zhu, H. M.; Wu, H. Z. Lattice-mismatched PbTe/ZnTe heterostructure with high-speed midinfrared photoresponses. ACS Appl. Mater. Interfaces2019, 11, 39342–39350.

    CAS  Google Scholar 

  29. Lewis, B.; Stirland, D. Growth and morphology of epitaxial lead telluride deposits on rocksalt. J. Cryst. Growth1968, 3–4, 200–205.

    Google Scholar 

  30. Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater.2016, 28, 8051–8057.

    CAS  Google Scholar 

  31. Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun.2016, 7, 13352.

    CAS  Google Scholar 

  32. Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc.2012, 134, 6132–6135.

    CAS  Google Scholar 

  33. Gite, A. B.; Palve, B.; Gaikwad, V. B.; Jain, G. H.; Pathan, H. M. Synthesis and characterization of electrodeposited lead telluride films on copper and stainless steel substrate. Mater. Res. Express.2019, 6, 075903.

    CAS  Google Scholar 

  34. Tschirner, N.; Lange, H.; Lambert, K.; Hens, Z.; Thomsen, C. Raman spectroscopy of PbTe/CdTe nanocrystals. Phys. Status Solidi B2011, 248, 2748–2750.

    CAS  Google Scholar 

  35. Gervilla, V.; Almyras, G. A.; Thunström, F.; Greene, J. E.; Sarakinos, K. Dynamics of 3D-island growth on weakly-interacting substrates. Appl. Surf. Sci.2019, 488, 383–390.

    CAS  Google Scholar 

  36. Zhang, B. P.; Cai, C. F.; Zhu, H.; Wu, F. F.; Ye, Z. Y.; Chen, Y. Y.; Li, R. F.; Kong, W. G.; Wu, H. Z. Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions. Appl. Phys. Lett.2014, 104, 161601.

    Google Scholar 

  37. Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano2014, 8, 7497–7505.

    CAS  Google Scholar 

  38. Wang, Y. G.; Gan, L.; Chen, J. N.; Yang, R.; Zhai, T. Y. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull.2017, 62, 1654–1662.

    CAS  Google Scholar 

  39. Li, N. N.; Wen, Y.; Cheng, R. Q.; Yin, L.; Wang, F.; Li, J.; Shifa, T. A.; Feng, L. P.; Wang, Z. X.; He, J. Strongly coupled van der Waals heterostructures for high-performance infrared phototransistor. Appl. Phys. Lett.2019, 114, 103501.

    Google Scholar 

  40. Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science2008, 321, 554–557.

    CAS  Google Scholar 

  41. Wu, H. Z.; Cao, C. F.; Si, J. X.; Xu, T. N.; Zhang, H. J.; Wu, H. F.; Chen, J.; Shen, W. Z.; Dai, N. Observation of phonon modes in epitaxial PbTe films grown by molecular beam epitaxy. J. Appl. Phys.2007, 101, 103505.

    Google Scholar 

  42. Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small2018, 14, 1802598.

    Google Scholar 

  43. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater.2015, 27, 6575–6581.

    CAS  Google Scholar 

  44. Zheng, D. S.; Wang, J. L.; Hu, W. D.; Liao, L.; Fang, H. H.; Guo, N.; Wang, P.; Gong, F.; Wang, X. D.; Fan, Z. Y. et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors. Nano Lett.2016, 16, 2548–2555.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61875223, 61922082 and 61927813), and the Natural Science Foundation of Hainan Province (No. 117111). The support from the Vacuum Interconnected Nanotech Workstation (Nano-X) of Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yin, Q., Huang, H. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 14, 1955–1960 (2021). https://doi.org/10.1007/s12274-020-2834-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2834-5

Keywords

Navigation