Skip to main content
Log in

Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed (hcp) nanocrystals is crucial for their synthesis with desired properties, but it remains a significant challenge. Here, we report using in situ liquid cell transmission electron microscopy (TEM) to directly capture the dynamic nucleation process and track the real-time growth pathway of hcp Ni nanocrystals at the atomic scale. It is demonstrated that the growth of amorphous-phase-mediated hcp Ni nanocrystals is from the metal-rich liquid phases. In addition, the reshaped preatomic facet development of a single nanocrystal is also imaged. Theoretical calculations further identify the non-classical features of hcp Ni crystallization. These discoveries could enrich the nucleation and growth model theory and provide useful information for the rational design of synthesis pathways of hcp nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao, Q.; Wang, Y.; Yang, S. Z.; Lu, K. Y.; Zhang, Y.; Tang, C. Y.; Song, J.; Feng, Y. G.; Xiong, L. K.; Peng, Y. et al. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis. ACS Nano 2018, 12, 11625–11631.

    Article  CAS  Google Scholar 

  2. Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.

    Article  CAS  Google Scholar 

  3. Han, M.; Liu, Q.; He, J.; Song, Y.; Xu, Z.; Zhu, J. M. Controllable synthesis and magnetic properties of cubic and hexagonal phase NICKEL nanocrystals. Adv. Mater. 2007, 19, 1096–1100.

    Article  CAS  Google Scholar 

  4. LaGrow, A. P.; Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Jefferson, D. A.; Tilley, R. D. Can polymorphism be used to form branched metal nanostructures? Adv. Mater. 2013, 25, 1552–1556.

    Article  CAS  Google Scholar 

  5. Richard-Plouet, M.; Guillot, M.; Vilminot, S.; Leuvrey, C.; Estournès, C.; Kurmoo, M. hcp and fcc Nickel nanoparticles prepared from organically functionalized layered phyllosilicates of nickel(II). Chem. Mater. 2007, 19, 865–871.

    Article  CAS  Google Scholar 

  6. Kim, C.; Kim, C.; Lee, K.; Lee, H. Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chem. Commun. 2014, 50, 6353–6356.

    Article  CAS  Google Scholar 

  7. Singh, J.; Kaurav, N.; Lallac, N. P.; Okram, G. S. Naturally self-assembled nickel nanolattice. J. Mater. Chem. C 2014, 2, 8918–8924.

    Article  CAS  Google Scholar 

  8. Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.

    Article  CAS  Google Scholar 

  9. He, K.; Sawczyk, M.; Liu, C.; Yuan, Y. F.; Song, B. A.; Deivanayagam, R.; Nie, A. M.; Hu, X. B.; Dravid, V. P.; Lu, J. et al. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci. Adv. 2020, 6, eaaz7524.

    Article  CAS  Google Scholar 

  10. Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.

    Article  CAS  Google Scholar 

  11. De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

    Article  Google Scholar 

  12. Woehl, T. J. Metal nanocrystal formation during liquid phase transmission electron microscopy: Thermodynamics and kinetics of precursor conversion, nucleation, and growth. Chem. Mater. 2020, 32, 7569–7581.

    Article  CAS  Google Scholar 

  13. Lupulescu, A. I.; Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 2014, 344, 729–732.

    Article  CAS  Google Scholar 

  14. Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. 2005, 44, 5576–5591.

    Article  Google Scholar 

  15. Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 12096–12101.

    Article  CAS  Google Scholar 

  16. Tan, S. F.; Chee, S. W.; Lin, G.; Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 2017, 50, 1303–1312.

    Article  CAS  Google Scholar 

  17. Zheng, H. M. Imaging, understanding, and control of nanoscale materials transformations. MRS Bull. 2021, 46, 443–450.

    Article  CAS  Google Scholar 

  18. Zheng, W. J.; Hauwiller, M. R.; Liang, W. I.; Ophus, C.; Ercius, P.; Chan, E. M.; Chu, Y. H.; Asta, M.; Du, X. W.; Alivisatos, A. P. et al. Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Res. 2019, 12, 2889–2893.

    Article  CAS  Google Scholar 

  19. Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.

    Article  CAS  Google Scholar 

  20. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 2013, 135, 5038–5043.

    Article  CAS  Google Scholar 

  21. Kim, B. H.; Heo, J.; Kim, S.; Reboul, C. F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 2020, 368, 60–67.

    Article  CAS  Google Scholar 

  22. Wang, M.; Leff, A. C.; Li, Y.; Woehl, T. J. Visualizing ligand-mediated bimetallic nanocrystal formation pathways with in situ liquid-phase transmission electron microscopy synthesis. ACS Nano 2021, 15, 2578–2588.

    Article  CAS  Google Scholar 

  23. Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.

    Article  CAS  Google Scholar 

  24. Ke, C. Z.; Xiao B. S.; Li, M.; Lu, J. Y.; He, Y.; Zhang, L.; Zhang, Q. B. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy. Energy Storage Sci. Technol. 2021, 10, 1219–1236.

    Google Scholar 

  25. Feng, X. Y.; Wu, H. H.; Gao, B.; Swietoslawski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layeredgraphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

    Article  CAS  Google Scholar 

  26. Sutter, P.; Sutter, E. Real-time electron microscopy of nanocrystal synthesis, transformations, and self-assembly in solution. Acc. Chem. Res. 2021, 54, 11–21.

    Article  CAS  Google Scholar 

  27. Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

    Article  CAS  Google Scholar 

  28. Zhang, J. Y.; Sun, S. G.; Liao, H. G. In-situ liquid cell TEM investigation on assembly and symmetry transformation of Pt superlattice. Sci. China Mater. 2020, 63, 602–610.

    Article  CAS  Google Scholar 

  29. Jin, B.; Wang, Y. M.; Liu, Z. M.; France-Lanord, A.; Grossman, J. C.; Jin, C. H.; Tang, R. K. Revealing the cluster-cloud and its role in nanocrystallization. Adv. Mater. 2019, 31, 1808225.

    Article  Google Scholar 

  30. Dachraoui, W.; Keller, D.; Henninen, T. R.; Ashton, O. J.; Erni, R. Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Lett. 2021, 21, 2861–2869.

    Article  CAS  Google Scholar 

  31. Yang, J.; Koo, J.; Kim, S.; Jeon, S.; Choi, B. K.; Kwon, S.; Kim, J.; Kim, B. H.; Lee, W. C.; Lee, W. B. et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by highresolution liquid-phase electron microscopy. J. Am. Chem. Soc. 2019, 141, 763–768.

    Article  CAS  Google Scholar 

  32. Zhang, J. Y.; Li, G.; Liao, H. G.; Sun, S. G. Tracking the atomic pathways of Pt3Ni-Ni(OH)2 core-shell structures at the gas-liquid interface by in-situ liquid cell TEM. Sci. China Chem. 2020, 63, 513–518.

    Article  CAS  Google Scholar 

  33. Zhang, J. Y.; Zhang, X.; Yang, D. P.; Zhao, P. Ligand-induced motion and self-assembly pathways between nanocubes. J. Phys. Chem. Lett. 2021, 12, 2429–2436.

    Article  CAS  Google Scholar 

  34. Zhang, J. Y.; Jiang, Y. H.; Fan, Q. Y.; Qu, M.; He, N.; Deng, J. X.; Sun, Y.; Cheng, J.; Liao, H. G.; Sun, S. G. Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution. Small Methods 2021, 5, 20001234.

    Article  Google Scholar 

  35. Zhang, J. Y. Atomic-scale imaging of the growth and transformation of Pt3Ni-NiO nanoparticles. New J. Chem. 2021, 45, 2217–2220.

    Article  CAS  Google Scholar 

  36. Geng, L.; Liu, Q. N.; Chen, J. Z.; Jia, P.; Ye, H. J.; Yan, J. T.; Zhang, L. Q.; Tang, Y. F.; Huang, J. Y. In situ observation of electrochemical Ostwald ripening during sodium deposition. Nano Res. 2022, 15, 2650–2654.

    Article  CAS  Google Scholar 

  37. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approachPhys. Comput. Phys. Commun. 2005, 167, 103–128.

    Article  CAS  Google Scholar 

  38. VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

    Article  Google Scholar 

  39. Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 1996, 54, 1703–1710.

    Article  CAS  Google Scholar 

  40. Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dualspace Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 1998, 58, 3641–3662.

    Article  CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  42. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  43. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  44. Liu, J. X.; Zhang, B. Y.; Chen, P. P.; Su, H. Y.; Li, W. X. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J. Phys. Chem. C 2016, 120, 24895–24903.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22001083, 52072323, and 52122211) and the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University. J. Y. L. thanks the Research Startup Fund from Harbin Institute of Technology (Shenzhen) with the project number University (No. 20210028) and the Shenzhen Steady Support Plan (No. GXWD20201230155427003-20200824103000001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyu Zhang, Xue Zhang or Qiaobao Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, M., Kang, Z. et al. Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy. Nano Res. 15, 6772–6778 (2022). https://doi.org/10.1007/s12274-022-4475-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4475-3

Keywords

Navigation