Skip to main content
Log in

Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Quantum dots color conversion (QDCC) is considered as a facial and versatile way to achieve full-color organic light emitting diode (OLED) and micro-LED display due to the wide color gamut performance and easy integration. However, the aggregation of QDs and coffee-ring effects after solvent evaporation lowers the light conversion efficiency and emission uniformity in QDs microarrays, raising blue-light leakage or optical crosstalk. Here, we report the fabrication of perovskite quantum dots (PQDs) microarrays by combining the inkjet printing and in situ fabrication of PQDs during the photopolymerization of precursor ink. The resulting PQDs microarrays exhibit three-dimensional (3D) morphology with hemisphere shape as well as strong photoluminescence, which is desirable for QDCC applications. We demonstrate the dominant role of ultraviolet (UV) curable precursors and surface functionalized substrate in controlling the shape of microarrays, where significantly increased contact angle (100°) and large height to diameter ratio (0.42) can be achieved. We further demonstrate the potential use of the in situ direct print photopolymerization method for fabricating large-area multicolor patterned pixel microarrays with a wide color gamut and high resolution. The fabrication of 3D PQDs microarrays opens up new opportunities in a variety of applications including photonics integration, micro-LED, and near-field display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

    Article  CAS  Google Scholar 

  2. Hu, Z. P.; Yin, Y. M.; Ali, M. U.; Peng, W. X.; Zhang, S. J.; Li, D. Z.; Zou, T. Y.; Li, Y. Y.; Jiao, S. B.; Chen, S. J. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 2020, 12, 2103–2110.

    Article  CAS  Google Scholar 

  3. Huang, Y. G.; Hsiang, E. L.; Deng, M. Y.; Wu, S. T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light. Sci. Appl. 2020, 9, 105.

    Article  CAS  Google Scholar 

  4. Liu, Z. J.; Lin, C. H.; Hyun, B. R.; Sher, C. W.; Lv, Z. J.; Luo, B. Q.; Jiang, F. L.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Micro-light-emitting diodes with quantum dots in display technology. Light. Sci. Appl. 2020, 9, 83.

    Article  CAS  Google Scholar 

  5. Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

    Article  CAS  Google Scholar 

  6. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  CAS  Google Scholar 

  7. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  8. Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3093–3097.

    Article  CAS  Google Scholar 

  9. Yang, H. J.; Cai, T.; Liu E. X.; Hill-Kimball K.; Gao J. B.; Chen O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

    Article  CAS  Google Scholar 

  10. Duan, M.; Feng, Z. Y.; Wu, Y. W.; Yin, Y. M.; Hu, Z. P.; Peng, W. X.; Li, D. Z.; Chen, S. J.; Lee, C. Y.; Lien, A. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 2019, 4, 1900779.

    Article  CAS  Google Scholar 

  11. Yin, Y. M.; Hu, Z. P.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W. X.; Geng, J.; Pan, S.; Wu, Y. W. et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol. 2020, 5, 2000251.

    Article  CAS  Google Scholar 

  12. Chen, E. G.; Lin, J. Y.; Yang, T.; Chen, Y.; Zhang, X.; Ye, Y.; Sun, J.; Yan, Q.; Guo, T. L. Asymmetric quantum-dot pixelation for color-converted white balance. ACS Photonics 2021, 8, 2158–2165.

    Article  CAS  Google Scholar 

  13. Chen, M. J.; Yang, J.; Wang, Z. Y.; Xu, Z. Y.; Lee, H.; Lee, H.; Zhou, Z. W.; Feng, S. P.; Lee, S.; Pyo, J. et al. 3D nanoprinting of perovskites. Adv. Mater. 2019, 31, e1904073.

    Article  Google Scholar 

  14. Bae, J.; Lee, S.; Ahn, J.; Kim, J. H.; Wajahat, M.; Chang, W. S.; Yoon, S. Y.; Kim, J. T.; Seol, S. K.; Pyo, J. 3D-printed quantum dot nanopixels. ACS Nano 2020, 14, 10993–11001.

    Article  CAS  Google Scholar 

  15. Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414.

    Article  CAS  Google Scholar 

  16. De Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

    Article  CAS  Google Scholar 

  17. Tekin, E.; Smith, P. J.; Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2008, 4, 703–713.

    Article  CAS  Google Scholar 

  18. Xuan, T. T.; Shi, S. C.; Wang, L.; Kuo, H. C.; Xie, R. J. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 2020, 11, 5184–5191.

    Article  CAS  Google Scholar 

  19. Li, H. G.; Duan, Y. Q.; Shao, Z. L.; Zhang, G. N.; Li, H. Y.; Huang, Y. A.; Yin, Z. P. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv. Mater. Technol. 2020, 5, 2000401.

    Article  CAS  Google Scholar 

  20. Gao, Y. Y.; Kang, C. B.; Prodanov, M. F.; Vashchenko, V. V.; Srivastava, A. K. Inkjet-printed, flexible full-color photoluminescence-type color filters for displays. Adv. Eng. Mater. 2022, 2101553.

  21. Li, D. Y.; Wang, J. J.; Li, M. Z.; Xie, G. C.; Guo, B.; Mu, L.; Li, H. Y.; Wang, J.; Yip, H. L.; Peng, J. B. Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 2020, 5, 2000099.

    Article  CAS  Google Scholar 

  22. Li, Y.; Chen, Z. W.; Liang, D.; Zang, J. Q.; Song, Z. H.; Cai, L.; Zou, Y. T.; Wang, X. C.; Wang, Y. S.; Li, P. D. et al. Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 2021, 9, 2100553.

    Article  CAS  Google Scholar 

  23. Li, H. G.; Duan, Y. Q.; Shao, Z. L.; Zhang, G. N.; Li, H. Y.; Huang, Y. A.; Yin, Z. P. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv. Mater. Technol. 2020, 5, 2000401.

    Article  CAS  Google Scholar 

  24. Shi, L. F.; Meng, L. H.; Jiang, F.; Ge, Y.; Li, F.; Wu, X. G.; Zhong, H. Z. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 2019, 29, 1903648.

    Article  Google Scholar 

  25. Liu, Y.; Li, F. S.; Qiu, L. C.; Yang, K. Y.; Li, Q. Q.; Zheng, X.; Hu, H. L.; Guo, T. L.; Wu, C. X.; Kim, T. W. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 2019, 13, 2042–2049.

    CAS  Google Scholar 

  26. Zhu, M. H.; Duan, Y. Q.; Liu, N.; Li, H. G.; Li, J. H.; Du, P. P.; Tan, Z. F.; Niu, G. D.; Gao, L.; Huang, Y. A. et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 2019, 29, 1903294.

    Article  Google Scholar 

  27. Shi, S. C.; Bai, W. H.; Xuan, T. T.; Zhou, T. L.; Dong, G. Y.; Xie, R. J. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 2021, 5, 2000889.

    Article  CAS  Google Scholar 

  28. Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.

    Article  CAS  Google Scholar 

  29. Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2020, 14, 82–88.

    Article  CAS  Google Scholar 

  30. Chen, X. M.; Zhang, F.; Ge, Y.; Shi, L. F.; Huang, S.; Tang, J. L.; Lv, Z.; Zhang, L.; Zou, B. S.; Zhong, H. Z. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: Nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 2018, 28, 1706567.

    Article  Google Scholar 

  31. Meng, L. H.; Yang, C. G.; Meng, J. J.; Wang, Y. Z.; Ge, Y.; Shao, Z. Q.; Zhang, G. F.; Rogach, A. L.; Zhong, H. Z. In-sttu fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416.

    Article  CAS  Google Scholar 

  32. Gao, A. J.; Yan, J.; Wang, Z. J.; Liu, P.; Wu, D.; Tang, X. B.; Fang, F.; Ding, S. H.; Li, X.; Sun, J. Y. et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 2020, 12, 2569–2577.

    Article  CAS  Google Scholar 

  33. Jeon, S.; Lee, S. Y.; Kim, S. K.; Kim, W.; Park, T.; Bang, J.; Ahn, J.; Woo, H. K.; Chae, J. Y.; Paik, T. et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 2020, 8, 2000501.

    Article  CAS  Google Scholar 

  34. Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

    Article  CAS  Google Scholar 

  35. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

    Article  CAS  Google Scholar 

  36. Sun, J. Z.; Bao, B.; He, M.; Zhou, H. H.; Song, Y. L. Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl. Mater. Interfaces 2015, 7, 28086–28099.

    Article  CAS  Google Scholar 

  37. Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260.

    Article  CAS  Google Scholar 

  38. Farahani, R. D.; Dubé, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28, 5794–5821.

    Article  CAS  Google Scholar 

  39. Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J. T.; Boyer, C. Seeing the light: Advancing materials chemistry through photopolymerization. Angew. Chem., Int. Ed. 2019, 58, 5170–5189.

    Article  CAS  Google Scholar 

  40. Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352.

    Article  CAS  Google Scholar 

  41. Elliott, A. M.; Ivanova, O. S.; Williams, C. B.; Campbell, T. A. Inkjet printing of quantum dots in photopolymer for use in additive manufacturing of nanocomposites. Adv. Eng. Mater. 2013, 15, 903–907.

    CAS  Google Scholar 

  42. Smith, M. J.; Malak, S. T.; Jung, J.; Yoon, Y. J.; Lin, C. H.; Kim, S.; Lee, K. M.; Ma, R. L.; White, T. J.; Bunning, T. J. et al. Robust, uniform, and highly emissive quantum dot-polymer films and patterns using thiol-ene chemistry. ACS Appl. Mater. Interfaces 2017, 9, 17435–17448.

    Article  CAS  Google Scholar 

  43. Hyun, B. R.; Sher, C. W.; Chang, Y. W.; Lin, Y. H.; Liu, Z. J.; Kuo, H. C. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954.

    Article  CAS  Google Scholar 

  44. Li, H. G.; Liu, N.; Shao, Z. L.; Li, H. Y.; Xiao, L.; Bian, J.; Li, J. H.; Tan, Z. F.; Zhu, M. H.; Duan, Y. Q. et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J. Mater. Chem. C 2019, 7, 14867–14873.

    Article  CAS  Google Scholar 

  45. Jia S. Q.; Li, G. Y.; Liu, P.; Cai, R.; Tang, H. D.; Xu, B.; Wang, Z. J.; Wu, Z. H.; Wang, K.; Sun, X. W. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 2020, 30, 1910817.

    Article  CAS  Google Scholar 

  46. Liang S.; Zhang, M. Y.; Biesold, G. M.; Choi, W.; He, Y. J.; Li, Z. L.; Shen, D. F.; Lin, Z. Q. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888.

    Article  CAS  Google Scholar 

  47. Hou, J.; Zhang, H. C.; Su, B.; Li, M. Z.; Yang, Q.; Jiang, L.; Song, Y. L. Four-dimensional screening anti-counterfeiting pattern by inkjet printed photonic crystals. Chem. Asian J. 2016, 11, 2680–2685.

    Article  CAS  Google Scholar 

  48. Shanahan, M. E. R.; Carré, A. Anomalous spreading of liquid drops on an elastomeric surface. Langmuir 1994, 10, 1647–1649.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB2009303), the National Natural Science Foundation of China (Nos. 62105025 and 61935001), and Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3040011182113). The authors would like to acknowledge the Experimental Center of Advanced Materials of Beijing Institute of Technology for the support in materials synthesis and characterization. We also acknowledge Prof. Ruibin Liu, Mr. Weifeng Ma, and Dr. Shuangyang Zou for the help in fluorescence spectra measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoling Yang or Yuejin Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, J., Zhang, P. et al. Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization. Nano Res. 15, 7681–7687 (2022). https://doi.org/10.1007/s12274-022-4466-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4466-4

Keywords

Navigation