Skip to main content
Log in

In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report an in-situ fabrication of halide perovskite (CH3NH3PbX3, CH3NH3 = methylammonium, MA, X= Cl, Br, I) nanocrystals in polyvinylalcohol (PVA) nanofibers (MAPbX3@PVA nanofibers) through electrospinning a perovskite precursor solution. With the content of the precursors increased, the resulting MAPbBr3 nanocrystals in PVA matrix changed the shape from ellipsoidal to pearl-like, and finely into rods-like. Optimized MAPbBr3@PVA nanofibers show strong polarized emission with the photoluminescence quantum yield of up to 72%. We reveal correlations between the shape of in-situ fabricated perovskite nanocrystals and the polarization degree of their emission by comparing experimental data from the single nanofiber measurements with theoretical calculations. Polarized emission of MAPbBr3@PVA nanofibers can be attributed to the dielectric confinement and quantum confinement effects. Moreover, nanofibers can be efficiently aligned by using parallel positioned conductor strips with an air gap as collector. A polarization ratio of 0.42 was achieved for the films of well-aligned MAPbBr3@PVA nanofibers with a macroscale size of 0.5 cm × 2 cm, which allows potential applications in displays, lasers, waveguides, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y. H.; Cho, H.; Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694–11702.

    Article  Google Scholar 

  2. Lozano, G. The role of metal halide perovskites in next-generation lighting devices. J. Phys. Chem. Lett. 2018, 9, 3987–3997.

    Article  Google Scholar 

  3. Han, D. B.; Imran, M.; Zhang, M. J.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M. S.; Ali, S.; Li, X. G. et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process. ACS Nano 2018, 12, 8808–8816.

    Article  Google Scholar 

  4. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  5. Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

    Article  Google Scholar 

  6. Wang, Y.; Sun, H. D. All-inorganic metal halide perovskite nanostructures: From photophysics to light-emitting applications. Small Methods 2018, 2, 1700252.

    Article  Google Scholar 

  7. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  Google Scholar 

  8. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  9. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  Google Scholar 

  10. Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.

    Article  Google Scholar 

  11. Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T. et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710–10717.

    Article  Google Scholar 

  12. He, J.; Chen, H. W.; Chen, H.; Wang, Y. N.; Wu, S. T.; Dong, Y. J. Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays. Opt. Express 2017, 25, 12915–12925.

    Article  Google Scholar 

  13. Zhang, M. J.; Wang, L. X.; Meng, L. H.; Wu, X. G.; Tan, Q. W.; Chen, Y. J.; Liang, W. Y.; Jiang, F.; Cai, Y.; Zhong, H. Z. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Adv. Optical Mater. 2018, 6, 1800077.

    Article  Google Scholar 

  14. Chang, S.; Bai, Z. L.; Zhong, H. Z. In situ fabricated perovskite nanocrystals: A revolution in optical materials. Adv. Optical Mater. 2018, 6, 1800380.

    Article  Google Scholar 

  15. Wang, D.; Wu, D.; Dong, D.; Chen, W.; Hao, J. J.; Qin, J.; Xu, B.; Wang, K.; Sun, X. W. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 2016, 8, 11565–11570.

    Article  Google Scholar 

  16. Liu, L. G.; Huang, S.; Pan, L. F.; Shi, L. J.; Zou, B. S.; Deng, L. G.; Zhong, H. Z. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew. Chem., Int. Ed. 2017, 56, 1780–1783.

    Article  Google Scholar 

  17. He, J.; Towers, A.; Wang, Y. N.; Yuan, P. S.; Jiang, Z.; Chen, J. S.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. J. In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale 2018, 10, 15436–15441.

    Article  Google Scholar 

  18. Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533.

    Article  Google Scholar 

  19. Wang, Z. Y.; Liu, J. Y.; Xu, Z. Q.; Xue, Y. Z.; Jiang, L. C.; Song, J. C.; Huang, F. Z.; Wang, Y. S.; Zhong, Y. L.; Zhang, Y. P. et al. Wavelengthtunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale 2016, 8, 6258–6264.

    Article  Google Scholar 

  20. Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

    Article  Google Scholar 

  21. Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.

    Article  Google Scholar 

  22. Gao, L.; Zeng, K.; Guo, J. S.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y. S.; Song, H. S. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 2016, 16, 7446–7454.

    Article  Google Scholar 

  23. Feng, J. G.; Yan, X. X.; Liu, Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

    Article  Google Scholar 

  24. Sheng, X. X.; Chen, G. Y.; Wang, C.; Wang, W. Q.; Hui, J. F.; Zhang, Q.; Yu, K. H.; Wei, W.; Yi, M. D.; Zhang, M. et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv. Funct. Mater. 2018, 28, 1800283.

    Article  Google Scholar 

  25. Oener, S. Z.; Khoram, P.; Brittman, S.; Mann, S. A.; Zhang, Q. P.; Fan, Z. Y.; Boettcher, S. W.; Garnett, E. C. Perovskite nanowire extrusion. Nano Lett. 2017, 17, 6557–6563.

    Article  Google Scholar 

  26. Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D Arrays of 1,024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.

    Article  Google Scholar 

  27. Liu, P.; He, X. X.; Ren, J. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Organicinorganic hybrid perovskite nanowire laser arrays. ACS Nano 2017, 11, 5766–5773.

    Article  Google Scholar 

  28. Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017, 17, 2482–2489.

    Article  Google Scholar 

  29. Lu, W. G.; Wu, X. G.; Huang, S.; Wang, L.; Zhou, Q. C.; Zou, B. S.; Zhong, H. Z.; Wang, Y. T. Strong polarized photoluminescence from stretched perovskite nanocrystal embedded polymer composite films. Adv. Optical Mater. 2017, 5, 1700594.

    Article  Google Scholar 

  30. Güner, T.; Topçu, G.; Savacı, U.; Genç, A.; Turan, S.; Sari, E.; Demir, M. M. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers. Nanotechnology 2018, 29, 135202.

    Article  Google Scholar 

  31. Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347.

    Article  Google Scholar 

  32. Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Jiang, H.; Li, C. Z. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253–4258.

    Article  Google Scholar 

  33. Yang, M. S.; Yu, J.; Jiang, S. Z.; Zhang, C.; Sun, Q. Q.; Wang, M. H.; Zhou, H.; Li, C. H.; Man, B. Y.; Lei, F. C. High stability luminophores: Fluorescent CsPbX3 (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Opt. Express 2018, 26, 20649–20660.

    Article  Google Scholar 

  34. Liao, H.; Guo, S. B.; Cao, S.; Wang, L.; Gao, F. M.; Yang, Z. B.; Zheng, J. J.; Yang, W. Y. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Optical Mater. 2018, 6, 1800346.

    Article  Google Scholar 

  35. Lin, C. C.; Jiang, D. H.; Kuo, C. C.; Cho, C. J.; Tsai, Y. H.; Satoh, T.; Su, C. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2210–2215.

    Article  Google Scholar 

  36. Tsai, P. C.; Chen, J. Y.; Ercan, E.; Chueh, C. C.; Tung, S. H.; Chen, W. C. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 2018, 14, 1704379.

    Article  Google Scholar 

  37. Han, M. H.; Shin, J. K.; Oh, K. I.; Lee, Y. J.; Song, D. H.; Chung, Y. S.; Lee, Y. R.; Choi, H. G.; Oh, T. H.; Han, S. S. et al. Preparation of recycled poly(vinyl alcohol) (PVA)/iodine polarizing film. Polym. Polym. Compos. 2010, 18, 391–396.

    Google Scholar 

  38. Zhang, F.; Chen, C.; Kershaw, S. V.; Xiao, C. T.; Han, J. B.; Zou, B. S.; Wu, X.; Chang, S.; Dong, Y. P.; Rogach, A. L. et al. Ligand-controlled formation and photoluminescence properties of CH3NH3PbBr3 nanocubes and nanowires. ChemNanoMat. 2017, 3, 303–310.

    Article  Google Scholar 

  39. Rodina, A. V.; Efros, A. L. Effect of dielectric confinement on optical properties of colloidal nanostructures. J. Exp. Theor. Phys. 2016, 122, 554–566.

    Article  Google Scholar 

  40. Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 2005, 72, 115308.

    Article  Google Scholar 

  41. Schneider, J.; Zhang, W. L.; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix. Nano Lett. 2017, 17, 3133–3138.

    Article  Google Scholar 

  42. Shabaev, A.; Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 2004, 4, 1821–1825.

    Article  Google Scholar 

  43. Chamarro, M.; Gourdon, C.; Lavallard, P. Photoluminescence polarization of semiconductor nanocrystals. J. Lumin. 1996, 70, 222–237.

    Article  Google Scholar 

  44. Zhang, G. F.; Peng, Y. G.; Xie, H. Q.; Li, B.; Li, Z. J.; Yang, C. G.; Guo, W. L.; Qin, C. B.; Chen, R. Y.; Gao, Y. et al. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films. Front. Phys. 2018, 14, 23605.

    Article  Google Scholar 

  45. Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063.

    Article  Google Scholar 

  46. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  Google Scholar 

  47. Diroll, B. T.; Dadosh, T.; Koschitzky, A.; Goldman, Y. E.; Murray, C. B. Interpreting the energy-dependent anisotropy of colloidal nanorods using ensemble and single-particle spectroscopy. J. Phys. Chem. C 2013, 117, 23928−23937.

    Article  Google Scholar 

  48. Tice, D. B.; Weinberg, D. J.; Mathew, N.; Chang, R. P. H.; Weiss, E. A. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. J. Phys. Chem. C 2013, 117, 13289–13296.

    Article  Google Scholar 

  49. Giblin, J.; Protasenko, V.; Kuno, M. Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption. ACS Nano 2009, 3, 1979–1987.

    Article  Google Scholar 

  50. Sitt, A.; Salant, A.; Menagen, G.; Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054–2060.

    Article  Google Scholar 

  51. Tauber, D.; Dobrovolsky, A.; Camacho, R.; Scheblykin, I. G. Exploring the electronic band structure of organometal halide perovskite via photoluminescence anisotropy of individual nanocrystals. Nano Lett. 2016, 16, 5087–5094.

    Article  Google Scholar 

  52. Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    Article  Google Scholar 

  53. Cunningham, P. D.; Boercker, J. E.; Placencia, D.; Tischler, J. G. Anisotropic absorption in PbSe nanorods. ACS Nano 2014, 8, 581–590.

    Article  Google Scholar 

  54. Diroll, B. T.; Koschitzky, A.; Murray, C. B. Tunable optical anisotropy of seeded CdSe/CdS nanorods. J. Phys. Chem. Lett. 2014, 5, 85–91.

    Article  Google Scholar 

  55. Lavallard, P.; Suris, R. A. Polarized photoluminescence of an assembly of non cubic microcrystals in a dielectric matrix. Solid State Commun. 1995, 95, 267–269.

    Article  Google Scholar 

  56. Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623.

    Article  Google Scholar 

  57. Hasegawa, M.; Hirayama, Y. Use of quantum rods for display applications. SID Symp. Dig. Tech. Pap. 2016, 47, 241–244.

    Article  Google Scholar 

  58. Qin, J.; Wen, Z. L.; Li, S.; Hao, J. J.; Chen, W.; Dong, D.; Deng, J.; Wang, D.; Xu, B.; Wu, D. et al. Large-scale luminance enhancement film with quantum rods aligned in polymeric nanofibers for high efficiency wide color gamut LED display. SID Symp. Dig. Tech. Pap. 2016, 47, 854–857.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) Joint Research project 51761165021 and N_CityU108/17 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqiang Shao or Haizheng Zhong.

Electronic supplementary material

12274_2019_2353_MOESM1_ESM.pdf

In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Yang, C., Meng, J. et al. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 12, 1411–1416 (2019). https://doi.org/10.1007/s12274-019-2353-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2353-4

Keywords

Navigation