Skip to main content
Log in

Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring, environmental monitoring, and the internet of things. However, developing a facile and effective method to fabricate vibration sensors simultaneously featuring high vibration frequency response-ability and flexibility remains a grand challenge. Herein, we report a flexible ultrahigh-frequency triboelectric vibration sensor (UTVS) prepared by a layer-particle-layer structure. Owing to the flexibility of the materials (i.e., polyethylene terephthalate membrane) and the ultrahigh-frequency vibration response-ability of internal microparticles, the flexible UTVS exhibits an enhanced working frequency range of 3–170 kHz, which is much broader than previously reported triboelectric vibration sensors. Moreover, the UTVS can work not only in a flat state but also in a bent state due to its flexibility and the unique layer-particle-layer structural design. The UTVS shows nanometer-level vibration response-ability, omnidirectional response, stability in the temperature range of 10–70 °C, good frequency resolution of 0.01 kHz, and excellent performance in burst vibration detection (e.g., pencil lead break events and impact events from falling steel balls). With a collection of compelling features, the device is successfully demonstrated in vibration monitoring of curved structures (e.g., real-time water pipeline leak monitoring). Such a flexible ultrahigh-frequency triboelectric vibration sensor holds great potential in a wide range of practical applications, such as communication, health care, and infrastructure monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awwad, A.; Yahyia, M.; Albasha, L.; Mortula, M. M.; Ali, T. Communication network for ultrasonic acoustic water leakage detectors. IEEE Access 2020, 8, 29954–29964.

    Article  Google Scholar 

  2. Rostami, J.; Tse, P. W.; Yuan, M. D. Detection of broken wires in elevator wire ropes with ultrasonic guided waves and tone-burst wavelet. Struct. Health Monit. 2020, 19, 481–494.

    Article  Google Scholar 

  3. Frederick, W. Substation insulator failure prevention by ultrasonic corona detection. IEEE Trans. Ind. Appl. 1972, IA-8, 82–83.

    Article  Google Scholar 

  4. Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified Self 2. 0. J. Sens. Actuator Netw. 2012, 1, 217–253.

    Article  Google Scholar 

  5. Dixon, N.; Smith, A.; Flint, J. A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644.

    Article  Google Scholar 

  6. Michlmayr, G.; Chalari, A.; Clarke, A.; Or, D. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides 2017, 14, 1139–1146.

    Article  Google Scholar 

  7. Chen, X.; Li, J. W.; Zhang, G. T.; Shi, Y. PZT nanoactive fiber composites for acoustic emission detection. Adv. Mater. 2011, 23, 3965–3969.

    Article  CAS  Google Scholar 

  8. Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.

    Article  CAS  Google Scholar 

  9. Lee, H. S.; Chung, J.; Hwang, G. T.; Jeong, C. K.; Jung, Y.; Kwak, J. H.; Kang, H. M.; Byun, M.; Kim, W. D.; Hur, S. et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 2014, 24, 6914–6921.

    Article  CAS  Google Scholar 

  10. Zhou, L. Y.; He, J. Q.; Li, W. Z.; He, P. S.; Ye, Q. X.; Fu, B. W.; Tao, P.; Song, C. Y.; Wu, J. B.; Deng, T. et al. Butterfly wing hears sound: Acoustic detection using biophotonic nanostructure. Nano Lett. 2019, 19, 2627–2633.

    Article  CAS  Google Scholar 

  11. Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T. et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2017, 99, 11–22.

    Article  Google Scholar 

  12. Oralkan, O.; Ergun, A. S.; Johnson, J. A.; Karaman, M.; Demirci, U.; Kaviani, K.; Lee, T. H.; Khuri-Yakub, B. T. Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1596–1610.

    Article  Google Scholar 

  13. Lee, S.; Kim, J.; Yun, I.; Bae, G. Y.; Kim, D.; Park, S.; Yi, I. M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468.

    Article  Google Scholar 

  14. Cong, M.; Wu, X. J.; Qian, C. Q. A longitudinal mode electromagnetic acoustic transducer (EMAT) based on a permanent magnet chain for pipe inspection. Sensors 2011, 16, 740.

    Article  Google Scholar 

  15. Kang, L.; Feeney, A.; Dixon, S. Wideband electromagnetic dynamic acoustic transducers (WEMDATs) for air-coupled ultrasonic applications. Appl. Phys. Lett. 2019, 114, 053505.

    Article  Google Scholar 

  16. Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553.

    Article  CAS  Google Scholar 

  17. Yan, S.; Liu, W. L.; Song, G. B.; Zhao, P. T.; Zhang, S. Connection looseness detection of steel grid structures using piezoceramic transducers. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718759234.

    Article  Google Scholar 

  18. Xu, Y.; Luo, M. Z.; Liu, Q.; Du, G. F.; Song, G. B. PZT transducer array enabled pipeline defect locating based on time-reversal method and matching pursuit de-noising. Smart Mater. Struct. 2019, 28, 075019.

    Article  CAS  Google Scholar 

  19. Du, G. F.; Kong, Q. Z.; Lai, T.; Song, G. B. Feasibility study on crack detection of pipelines using piezoceramic transducers. Int. J. Distrib. Sens. Netw. 2013, 9, 631715.

    Article  Google Scholar 

  20. Cheng, L. Q.; Xu, Z.; Zhao, C. L.; Thong, H. C.; Cen, Z. Y.; Lu, W.; Lan, Y.; Wang, K. Significantly improved piezoelectric performance of PZT-PMnN ceramics prepared by spark plasma sintering. RSC Adv. 2018, 8, 35594–35599.

    Article  CAS  Google Scholar 

  21. Hu, H. J.; Zhu, X.; Wang, C. H.; Zhang, L.; Li, X. S.; Lee, S.; Huang, Z. L.; Chen, R. M.; Chen, Z. Y.; Wang, C. F. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 2018, 4, eaar3979.

    Article  Google Scholar 

  22. Wang, C. H.; Li, X. S.; Hu, H. J.; Zhang, L.; Huang, Z. L.; Lin, M. Y.; Zhang, Z. R.; Yin, Z. N.; Huang, B.; Gong, H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695.

    Article  Google Scholar 

  23. Loke, G.; Alain, J.; Yan, W.; Khudiyev, T.; Noel, G.; Yuan, R.; Missakian, A.; Fink, Y. Computing fabrics. Matter 2020, 2, 786–788.

    Article  Google Scholar 

  24. Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y. P.; Sordo, F.; Wei, L.; Sorin, F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 2019, 31, 1802348.

    Article  Google Scholar 

  25. Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 2020, 32, 1904911.

    Article  CAS  Google Scholar 

  26. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  27. Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

    Article  CAS  Google Scholar 

  28. Li, G. Z.; Wang, G. G.; Cai, Y. W.; Sun, N.; Li, F.; Zhou, H. L.; Zhao, H. X.; Zhang, X. N.; Han, J. C.; Yang, Y. A high-performance transparent and flexible triboelectric nanogenerator based on hydrophobic composite films. Nano Energy 2020, 75, 104918.

    Article  CAS  Google Scholar 

  29. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    Article  CAS  Google Scholar 

  30. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  31. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  Google Scholar 

  32. Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494.

    Article  CAS  Google Scholar 

  33. Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

    Article  CAS  Google Scholar 

  34. Sun, J. G.; Tu, K. K.; Büchele, S.; Koch, S. M.; Ding, Y.; Ramakrishna, S. N.; Stucki, S.; Guo, H. Y.; Wu, C. S.; Keplinger, T. et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 2021, 4, 3049–3066.

    Article  CAS  Google Scholar 

  35. Xu, C. H.; Yang, Y. R.; Gao, W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter 2020, 2, 1414–1445.

    Article  Google Scholar 

  36. Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

    Article  CAS  Google Scholar 

  37. Wang, L. L.; Liu, W. Q.; Yan, Z. G.; Wang, F. J.; Wang, X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv. Funct. Mater. 2021, 31, 2007221.

    Article  CAS  Google Scholar 

  38. Liu, W. Q.; Wang, X.; Song, Y. X.; Cao, R. R.; Wang, L. L.; Yan, Z. G.; Shan, G. Y. Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 2020, 73, 104843.

    Article  CAS  Google Scholar 

  39. Yan, Z. G.; Wang, L. L.; Xia, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

    Article  CAS  Google Scholar 

  40. Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

    Article  CAS  Google Scholar 

  41. Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    Article  CAS  Google Scholar 

  42. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  43. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  44. Yu, A. F.; Song, M.; Zhang, Y.; Zhang, Y.; Chen, L. B.; Zhai, J. Y.; Wang, Z. L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 2015, 8, 765–773.

    Article  CAS  Google Scholar 

  45. Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

    Article  CAS  Google Scholar 

  46. Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

    Article  CAS  Google Scholar 

  47. Jang, J.; Lee, J. W.; Jang, J. H.; Choi, H. A triboelectric-based artificial basilar membrane to mimic cochlear tonotopy. Adv. Healthc. Mater. 2016, 5, 2481–2487.

    Article  CAS  Google Scholar 

  48. Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

    Article  Google Scholar 

  49. Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772.

    Article  CAS  Google Scholar 

  50. de Almeida, V. A. D.; Baptista, F. G.; de Aguiar, P. R. Piezoelectric transducers assessed by the pencil lead break for impedance-based structural health monitoring. IEEE Sens. J. 2015, 15, 693–702.

    Article  Google Scholar 

  51. Li, R.; Huang, H. D.; Xin, K. L.; Tao, T. A review of methods for burst/leakage detection and location in water distribution systems. Water Supply 2015, 15, 429–441.

    Article  Google Scholar 

Download references

Acknowledgements

J. Y. acknowledges support from the National Natural Science Foundation of China (No. 51675069), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1703047), the Fundamental Research Funds for the Central Universities (Nos. 2018CDQYGD0020 and cqu2018CDHB1A05), and the Natural Science Foundation Projects of Chongqing (Nos. cstc2017shmsA40018 and cstc2018jcyjAX0076). Z. W. L. would like to thank the China Scholarship Council (No. 201806050157) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Sun, C., Zhang, G. et al. Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Res. 15, 7484–7491 (2022). https://doi.org/10.1007/s12274-022-4363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4363-x

Keywords

Navigation