Skip to main content
Log in

Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of p-i-n structured perovskite solar cells (PSCs) requires more extensive explorations on seeking efficient, low cost and stable hole transporting materials (HTMs). Small molecular HTMs are superior to polymeric ones in terms of synthetic reproducibility as well as purity. However, thin films composed of small molecules are usually labile during the solution-based perovskite deposition. Herein, we propose a molecular engineering strategy of incorporating oligothiophene as conjugation bridge to develop robust oligomer HTMs for p-i-n type PSCs. Upon increasing the oligothiophene chain length from α-bithiophene to α-quaterthiophene and α-hexathiophene, their HOMO energy levels remain unchanged, but their solubility in common organic solvents decreased remarkably, thus greatly enhancing their tolerance to the perovskite deposition. The rational design of oligothiophene chain length can effectively tune their optoelectronic properties as well as thin film stability under polar solvent soaking. The best performance is achieved by an α-quaterthiophene based HTM (QT), showing a high efficiency of 17.69% with fill factor of 0.81, which are comparable to those of a commercially available benchmark polymer HTM (poly[bis (4-phenyl)(2,4-dimethylphenyl) amine], PTAA) based devices fabricated under the same conditions. Our developed oligomer system not only provides the definite molecular structures like small molecule-type HTMs, but also exhibits the excellent film-forming like polymer-type HTMs, thus achieving the well-balanced parameters among solvent tolerance, thin film conductivity, and interfacial charge transfer efficiency, especially building up a platform to develop low cost and reproducible efficient HTMs in p-i-n structured perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  PubMed  Google Scholar 

  2. Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235

  3. Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278–1284

    Article  CAS  Google Scholar 

  4. Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238

    Article  CAS  Google Scholar 

  5. Seo J, Noh JH, Seok SI. Acc Chem Res, 2016, 49: 562–572

    Article  CAS  PubMed  Google Scholar 

  6. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726

    Article  CAS  PubMed  Google Scholar 

  8. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gratzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170

  9. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177

    Article  CAS  Google Scholar 

  10. Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H. Nat Commun, 2018, 9: 2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang X, Yu Z, Lai J, Zhang Y, Lei N, Wang D, Sun L. Sci China Chem, 2017, 60: 423–430

    Article  CAS  Google Scholar 

  12. Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727–3732

    Article  CAS  PubMed  Google Scholar 

  13. Meng L, You J, Guo TF, Yang Y. Acc Chem Res, 2016, 49: 155–165

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948

    Article  CAS  Google Scholar 

  15. Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148

    Article  CAS  Google Scholar 

  17. Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C. Adv Energy Mater, 2016, 6: 1600474

    Article  CAS  Google Scholar 

  18. Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y. Sci China Chem, 2017, 60: 136–143

    Article  CAS  Google Scholar 

  19. Wang Q, Chueh CC, Eslamian M, Jen AKY. ACS Appl Mater Interfaces, 2016, 8: 32068–32076

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Wang KX, Chang JJ, Jiang YY, Xiao QS, Li Y. J Mater Chem A, 2017, 5: 13817–13822

    Article  CAS  Google Scholar 

  21. Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J. Nat Commun, 2015, 6: 7747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nie W, Tsai H, Blancon JC, Liu F, Stoumpos CC, Traore B, Kepe-nekian M, Durand O, Katan C, Tretiak S, Crochet J, Ajayan PM, Kanatzidis MG, Even J, Mohite AD. Adv Mater, 2017, 30: 1703879

    Article  CAS  Google Scholar 

  23. Hou F, Su Z, Jin F, Yan X, Wang L, Zhao H, Zhu J, Chu B, Li W. Nanoscale, 2015, 7: 9427–9432

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Bi C, Huang J. Nano Energy, 2015, 15: 275–280

    Article  CAS  Google Scholar 

  25. Tong T, Tan C, Keller T, Li B, Zheng C, Scherf U, Gao D, Huang W. Macromolecules, 2018, 51: 7407–7416

    Article  CAS  Google Scholar 

  26. Matsui T, Petrikyte I, Malinauskas T, Domanski K, Daskeviciene M, Steponaitis M, Gratia P, Tress W, Correa-Baena JP, Abate A, Hagfeldt A, Grätzel M, Nazeeruddin MK, Getautis V, Saliba M. Chem-SusChem, 2016, 9: 2567–2571

    CAS  Google Scholar 

  27. Yang L, Cai F, Yan Y, Li J, Liu D, Pearson AJ, Wang T. Adv Funct Mater, 2017, 27: 1702613

    Article  CAS  Google Scholar 

  28. Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528–2531

    Article  CAS  PubMed  Google Scholar 

  29. Shang R, Zhou Z, Nishioka H, Halim H, Furukawa S, Takei I, Ninomiya N, Nakamura E. J Am Chem Soc, 2018, 140: 5018–5022

    Article  CAS  PubMed  Google Scholar 

  30. Magomedov A, Al-Ashouri A, Kasparavičius E, Strazdaite S, Niaura G, Jošt M, Malinauskas T, Albrecht S, Getautis V. Adv Energy Mater, 2018, 8: 1801892

    Article  CAS  Google Scholar 

  31. Calió L, Kazim S, Grätzel M, Ahmad S. Angew Chem Int Ed, 2016, 55: 14522–14545

    Article  CAS  Google Scholar 

  32. Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y. J Am Chem Soc, 2015, 137: 3886–3893

    Article  CAS  PubMed  Google Scholar 

  33. Hu W, Zhang Z, Cui J, Shen W, Li M, He R. Nanoscale, 2017, 9: 12916–12924

    Article  CAS  PubMed  Google Scholar 

  34. Liu B, Chai Q, Zhang W, Wu W, Tian H, Zhu WH. Green Energy Environ, 2016, 7: 6068–6075

    Google Scholar 

  35. Li W, Shi W, Wu Z, Wang J, Wu M, Zhu WH. Green Energy Environ, 2017, 2: 428–435

    Article  Google Scholar 

  36. Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C. Nano Res, 2015, 8: 2474–2480

    Article  CAS  Google Scholar 

  37. Paek S, Zimmermann I, Gao P, Gratia P, Rakstys K, Grancini G, Nazeeruddin MK, Rub MA, Kosa SA, Alamry KA, Asiri AM. Chem Sci, 2016, 7: 6068–6075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C. Nano Energy, 2015, 16: 428–437

    Article  CAS  Google Scholar 

  39. Xu B, Gabrielsson E, Safdari M, Cheng M, Hua Y, Tian H, Gardner JM, Kloo L, Sun L. Adv Energy Mater, 2015, 5: 1402340

    Article  CAS  Google Scholar 

  40. Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S. Appl Phys Lett, 2014, 104: 253508

    Article  CAS  Google Scholar 

  41. Kim HD, Ohkita H. Sol RRL, 2017, 1: 1700027

    Article  CAS  Google Scholar 

  42. Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Energy Environ Sci, 2014, 7: 2619–2623

    Article  CAS  Google Scholar 

  43. Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019–9038

    Article  CAS  PubMed  Google Scholar 

  44. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344

    Article  CAS  PubMed  Google Scholar 

  45. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I. J Am Chem Soc, 2009, 131: 10814–10815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822504, 21706070, 21421004, 21636002), Shanghai Science and Technology Committee (17ZR1407400, 17520750100), China Association of Science and Technology (2017QNRC001), Eastern Scholar (TP2016018), and the Fundamental Research Funds for the Central Universities (WJ1714007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Wu.

Electronic supplementary material

11426_2018_9452_MOESM1_ESM.docx

Efficient p-i-n Structured Perovskite Solar Cells Employing Low-Cost and Highly Reproducible Oligomers as Hole Transporting Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Li, W., Li, L. et al. Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials. Sci. China Chem. 62, 767–774 (2019). https://doi.org/10.1007/s11426-018-9452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9452-9

Keywords

Navigation