Skip to main content
Log in

Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In soft connective tissues, the extracellular matrix (ECM) provides spatiotemporally well-defined mechanical and chemical cues that regulate the functions of residing cells. However, it remains challenging to replicate these essential features in synthetic biomaterials. Here, we develop a self-sorting double network hydrogel (SDNH) with spatially well-defined bioactive ligands as synthetic ECM. Specifically, the SDNH is made of two peptides that can independently self-assemble into fibers of different microscopic features, mimicking the hierarchical protein assemblies in ECM. Each peptide contains a photo-reactive moiety for orthogonally patterning bioactive molecules (i.e., cyclic arginine-glycine-aspartate (cRGD) and osteogenic growth peptide (OGP)) using UV and visible light. As a proof-of-principle, we demonstrate the engineering of SDNH with spatially separated or colocalized cRGD and OGP molecules to control the response of encapsulated stem cells. Our study represents an important step towards defining the mechanical and biochemical cues of synthetic ECM using advanced chemical biology tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gkretsi, V.; Stylianopoulos, T. Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front. Onco l. 2018, 8, 145.

    Article  Google Scholar 

  2. Chaudhuri, O.; Cooper-White, J.; Janmey, P. A.; Mooney, D. J.; Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546.

    Article  CAS  Google Scholar 

  3. Plotnikov, S. V.; Pasapera, A. M.; Sabass, B.; Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2012, 151, 1513–1527.

    Article  CAS  Google Scholar 

  4. Yamada, K. M.; Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019, 20, 738–752.

    Article  CAS  Google Scholar 

  5. Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H. P.; Lippens, E.; Duda, G. N. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 2016, 15, 326–334.

    Article  CAS  Google Scholar 

  6. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27.

    Article  CAS  Google Scholar 

  7. Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 7, 15012.

    Article  Google Scholar 

  8. Huang, G. Y.; Li, F.; Zhao, X.; Ma, Y. F.; Li, Y. H.; Lin, M.; Jin, G. R.; Lu, T. J.; Genin, G. M.; Xu, F. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 2017, 117, 12764–12850.

    Article  CAS  Google Scholar 

  9. Buerkle, L. E.; Rowan, S. J. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 2012, 41, 6089–6102.

    Article  CAS  Google Scholar 

  10. Okesola, B. O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736.

    Article  CAS  Google Scholar 

  11. Raeburn, J.; Adams, D. J. Multicomponent low molecular weight gelators. Chem. Commun. 2015, 51, 5170–5180.

    Article  CAS  Google Scholar 

  12. Li, J.; Du, X. W.; Hashim, S.; Shy, A.; Xu, B. Aromatic-aromatic interactions enable α-helix to β-sheet transition of peptides to form supramolecular hydrogels. J. Am. Chem. Soc. 2017, 139, 71–74.

    Article  CAS  Google Scholar 

  13. Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Self-assembling peptide semiconductors. Science 2017, 358.

  14. Makam, P.; Gazit, E. Minimalistic peptide supramolecular co-assembly: Expanding the conformational space for nanotechnology. Chem. Soc. Rev. 2018, 47, 3406–3420.

    Article  CAS  Google Scholar 

  15. Singh, N.; Maity, C.; Zhang, K.; Angulo-Pachón, C. A.; Van Esch, J. H.; Eelkema, R.; Escuder, B. Synthesis of a double network supramolecular hydrogel by having one network catalyse the formation of the second. Chem. Eur. J. 2017, 23, 2018–2021.

    Article  CAS  Google Scholar 

  16. Nagy, K. J.; Giano, M. C.; Jin, A.; Pochan, D. J.; Schneider, J. P. Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J. Am. Chem. Soc. 2011, 133, 14975–14977.

    Article  CAS  Google Scholar 

  17. Che, X. Y.; Bai, B. L.; Zhang, T. R.; Zhang, C. L.; Zhang, C. X.; Zhang, P.; Wang, H. T.; Li, M. Gelation behaviour and gel properties of two-component organogels containing a photoresponsive gelator. New J. Chem. 2017, 41, 8614–8619.

    Article  CAS  Google Scholar 

  18. Ardoña, H. A. M.; Draper, E. R.; Citossi, F.; Wallace, M.; Serpell, L. C.; Adams, D. J.; Tovar, J. D. Kinetically controlled coassembly of multichromophoric peptide hydrogelators and the impacts on energy transport. J. Am. Chem. Soc. 2017, 139, 8685–8692.

    Article  Google Scholar 

  19. Hai, Z. J.; Li, J. D.; Wu, J. J.; Xu, J. C.; Liang, G. L. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J. Am. Chem. Soc. 2017, 139, 1041–1044.

    Article  CAS  Google Scholar 

  20. Zheng, Z.; Chen, P. Y.; Xie, M. L.; Wu, C. F.; Luo, Y. F.; Wang, W. T.; Jiang, J.; Liang, G. L. Cell environment-differentiated self-assembly of nanofibers. J. Am. Chem. Soc. 2016, 138, 11128–11131.

    Article  CAS  Google Scholar 

  21. Cornwell, D. J.; Daubney, O. J.; Smith, D. K. Photopatterned multidomain gels: Multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-D-sorbitol derivatives. J. Am. Chem. Soc. 2015, 137, 15486–15492.

    Article  CAS  Google Scholar 

  22. Tanaka, W.; Shigemitsu, H.; Fujisaku, T.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. Post-assembly fabrication of a functional multicomponent supramolecular hydrogel based on a self-sorting double network. J. Am. Chem. Soc. 2019, 141, 4997–5004.

    Article  CAS  Google Scholar 

  23. Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. et al. Chemically programmed self-sorting of gelator networks. Nat. Commun. 2013, 4, 1480.

    Article  Google Scholar 

  24. Li, C. C.; Rowland, M. J.; Shao, Y.; Cao, T. Y.; Chen, C.; Jia, H. Y.; Zhou, X.; Yang, Z. Q.; Scherman, O. A.; Liu, D. S. Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater. 2015, 27, 3298–3304.

    Article  CAS  Google Scholar 

  25. Kubota, R.; Liu, S.; Shigemitsu, H.; Nakamura, K.; Tanaka, W.; Ikeda, M.; Hamachi, I. Imaging-based study on control factors over self-sorting of supramolecular nanofibers formed from peptide- and lipid-type hydrogelators. Bioconjugate Chem. 2018, 29, 2058–2067.

    Article  CAS  Google Scholar 

  26. Cross, E. R.; Sproules, S.; Schweins, R.; Draper, E. R.; Adams, D. J. Controlled tuning of the properties in optoelectronic self-sorted gels. J. Am. Chem. Soc. 2018, 140, 8667–8670.

    Article  CAS  Google Scholar 

  27. Wang, Y. M.; Lovrak, M.; Liu, Q.; Maity, C.; Le Sage, V. A. A.; Guo, X. H.; Eelkema, R.; Esch, J. H. V. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. J. Am. Chem. Soc. 2019, 141, 2847–2851.

    Article  CAS  Google Scholar 

  28. Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat. Chem. 2016, 8, 743–752.

    Article  CAS  Google Scholar 

  29. Draper, E. R.; Eden, E. G. B.; McDonald, T. O.; Adams, D. J. Spatially resolved multicomponent gels. Nat. Chem. 2015, 7, 848–852.

    Article  CAS  Google Scholar 

  30. Shigemitsu, H.; Fujisaku, T.; Tanaka, W.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 2018, 13, 165–172.

    Article  CAS  Google Scholar 

  31. Mosiewicz, K. A.; Kolb, L.; Van Der Vlies, A. J.; Martino, M. M.; Lienemann, P. S.; Hubbell, J. A.; Ehrbar, M.; Lutolf, M. P. in situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 2013, 12, 1072–1078.

    Article  CAS  Google Scholar 

  32. Grim, J. C.; Brown, T. E.; Aguado, B. A.; Chapnick, D. A.; Viert, A. L.; Liu, X.; Anseth, K. S. A Reversible and repeatable thiol-ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Central Science 2018, 4, 909–916.

    Article  CAS  Google Scholar 

  33. Deforest, C. A.; Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 2015, 14, 523–531.

    Article  CAS  Google Scholar 

  34. Gandavarapu, N. R.; Azagarsamy, M. A; Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 2014, 26, 2521–2526.

    Article  CAS  Google Scholar 

  35. Wade, R. J.; Bassin, E. J.; Gramlich, W. M.; Burdick, J. A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater. 2015, 27, 1356–1362.

    Article  CAS  Google Scholar 

  36. Wylie, R. G.; Ahsan, S.; Aizawa, Y.; Maxwell, K. L.; Morshead, C. M.; Shoichet, M. S. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 2011, 10, 799–806.

    Article  CAS  Google Scholar 

  37. Song, W. J.; Wang, Y. Z.; Qu, J.; Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via “Photoclick Chemistry” in bacterial cells. J. Am. Chem. S oc. 2008, 130, 9654–9655.

    Article  CAS  Google Scholar 

  38. Tian, Y. L.; Jacinto, M. P.; Zeng, Y.; Yu, Z. P.; Qu, J.; Liu, W. R.; Lin, Q. Genetically encoded 2-aryl-5-carboxytetrazoles for site-selective protein photo-cross-linking. J. Am. Chem. Soc. 2017, 139, 6078–6081.

    Article  CAS  Google Scholar 

  39. He, M. T.; Li, J. B.; Tan, S.; Wang, R. Z.; Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 2013, 135, 18718–18721.

    Article  CAS  Google Scholar 

  40. Li, J. B.; Kong, H.; Huang, L.; Cheng, B.; Qin, K.; Zheng, M. M.; Yan, Z.; Zhang, Y. Visible light-initiated bioorthogonal photoclick cycloaddition. J. Am. Chem. Soc. 2018, 140, 14542–14546.

    Article  CAS  Google Scholar 

  41. Draper, E. R.; Adams, D. J. How should multicomponent supramolecular gels be characterised. Chem. Soc. Rev. 2018, 47, 3395–3405.

    Article  CAS  Google Scholar 

  42. Prasanthkumar, S.; Ghosh, S.; Nair, V. C.; Saeki, A.; Seki, S.; Ajayaghosh, A. Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity. Angew. Chem., Int. Ed. 2015, 54, 946–950.

    Article  CAS  Google Scholar 

  43. Sugiyasu, K.; Kawano, S. I.; Fujita, N.; Shinkai, S. Self-sorting organogels with p-n heterojunction points. Chem. Mater. 2008, 20, 2863–2865.

    Article  CAS  Google Scholar 

  44. Wang, X.; Yan, C.; Ye, K.; He, Y.; Li, Z. H.; Ding, J. D. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013, 34, 2865–2874.

    Article  CAS  Google Scholar 

  45. Pigossi, S. C.; Medeiros, M. C.; Saska, S.; Cirelli, J. A.; Scarel-Caminaga, R. M. Role of osteogenic growth peptide (OGP) and OGP (10–14) in bone regeneration: A review. Int. J. Mol. Sci. 2016, 17, 1885.

    Article  Google Scholar 

  46. Bab, I.; Chorev, M. Osteogenic growth peptide: From concept to drug design. Biopolymers 2002, 66, 33–48.

    Article  CAS  Google Scholar 

  47. Policastro, G. M.; Lin, F.; Callahan, L. A. S.; Esterle, A.; Graham, M.; Stakleff, K. S.; Becker, M. L. OGP functionalized phenylalanine-based poly (ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 2015, 16, 1358–1371.

    Article  CAS  Google Scholar 

  48. Liu, J.; Tan, C. S. Y.; Yu, Z. Y.; Lan, Y.; Abell, C.; Scherman, O. A. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery. Adv. Mater. 2017, 29, 1604951.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported mainly by the National Natural Science Foundation of China (Nos. 22137003, 21977043, and 11804147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cao or Yan Zhang.

Electronic Supplementary Material

12274_2022_4089_MOESM1_ESM.pdf

Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Lei, H., Xie, X. et al. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Res. 15, 4294–4301 (2022). https://doi.org/10.1007/s12274-022-4089-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4089-9

Keywords

Navigation