Skip to main content
Log in

Past, present and future of indium phosphide quantum dots

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Indium phosphide (InP) colloidal quantum dots (QDs) have been drawn significant attention as a potentially less toxic alternative to cadmium-based QDs over the past two decades. The advances in their colloidal synthesis methods have allowed for the synthesis of a wide variety of compositions, heterojunctions, dopants, and ligands that enabled spectral tunability from blue to near-infrared, narrow emission linewidths, and perfect quantum yields approaching unity. Furthermore, it has higher covalency compared to cadmium chalcogenides leading to improved optical stability. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications such as light-emitting diodes, luminescent solar concentrators (LSCs), and solar cells with high potential for commercialization. This review focuses on the history, recent development, and future aspect of synthesis and application of colloidal InP QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

    Article  CAS  Google Scholar 

  2. Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

    Article  Google Scholar 

  3. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  CAS  Google Scholar 

  4. De Franco, M.; Cirignano, M.; Cavattoni, T.; Jalali, H. B.; Prato, M.; Di Stasio, F. Facile purification protocol of CsPbBr3 nanocrystals for light-emitting diodes with improved performance. Optical Materials: X 2022, 13, 100124.

    Article  CAS  Google Scholar 

  5. Imran, M.; Mai, B. T.; Goldoni, L.; Cirignano, M.; Jalali, H. B.; Di Stasio, F.; Pellegrino, T.; Manna, L. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters. ACS Energy Lett. 2021, 6, 2844–2853.

    Article  CAS  Google Scholar 

  6. Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol 2015, 10, 878–885.

    Article  CAS  Google Scholar 

  7. Wei, M. Y.; de Arquer, F. P. G.; Walters, G.; Yang, Z. Y.; Quan, L. N.; Kim, Y.; Sabatini, R.; Quintero-Bermudez, R.; Gao, L.; Fan, J. Z. et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat. Energy 2019, 4, 197–205.

    Article  CAS  Google Scholar 

  8. Mora-Seró, I. Turn defects into strengths. Nat. Energy 2020, 5, 363–364.

    Article  Google Scholar 

  9. Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135.

    Article  CAS  Google Scholar 

  10. Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J. L.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M. G.; Dubertret, B. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 2125.

    Article  Google Scholar 

  11. Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

    Article  CAS  Google Scholar 

  12. Geiregat, P.; Van Thourhout, D.; Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 2019, 11, 41.

    Article  CAS  Google Scholar 

  13. Liu, J. B.; Zhang, H.; Selopal, G. S.; Sun, S. S.; Zhao, H. G.; Rosei, F. Visible and near-infrared, multiparametric, ultrasensitive nanothermometer based on dual-emission colloidal quantum dots. ACS Photonics 2019, 6, 2479–2486.

    Article  CAS  Google Scholar 

  14. Gandini, M.; Villa, I.; Beretta, M.; Gotti, C.; Imran, M.; Carulli, F.; Fantuzzi, E.; Sassi, M.; Zaffalon, M.; Brofferio, C. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020, 75, 462–468.

    Article  Google Scholar 

  15. Bahmani Jalali, H.; Karatum, O.; Melikov, R.; Dikbas, U. M.; Sadeghi, S.; Yildiz, E.; Dogru, I. B.; Ozgun Eren, G.; Ergun, C.; Sahin, A. et al. Biocompatible quantum funnels for neural photostimulation. Nano Lett. 2019, 19, 5975–5981.

    Article  CAS  Google Scholar 

  16. Bahmani Jalali, H.; Mohammadi Aria, M.; Dikbas, U. M.; Sadeghi, S.; Ganesh Kumar, B.; Sahin, M.; Kavakli, I. H.; Ow-Yang, C. W.; Nizamoglu, S. Effective neural photostimulation using indium-based type-II quantum dots. ACS Nano 2018, 72, 8104–8114.

    Article  Google Scholar 

  17. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 7, 0010.

    Article  Google Scholar 

  18. McHugh, K. J.; Jing, L. H.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, eaay7162.

    Article  CAS  Google Scholar 

  19. Zhou, J.; Liu, Y.; Tang, J.; Tang, W. H. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today 2017, 20, 360–376.

    Article  CAS  Google Scholar 

  20. Dehnel, J.; Barak, Y.; Meir, I.; Budniak, A. K.; Nagvenkar, A. P.; Gamelin, D. R.; Lifshitz, E. Insight into the spin properties in undoped and Mn-doped CdSe/CdS-seeded nanorods by optically detected magnetic resonance. ACS Nano 2020, 14, 13478–13490.

    Article  CAS  Google Scholar 

  21. Market—Growth, G. Trends, and forecast (2020–2025). Mordor Intelligence, 2019. (Please note that this literature was not found, and revise, thanks!)

  22. Kumar, B. G.; Sadeghi, S.; Melikov, R.; Aria, M. M.; Jalali, H. B.; Ow-Yang, C. W.; Nizamoglu, S. Structural control of INP/ZNS core/shell quantum dots enables high-quality white LEDs. Nanotechnology 2018, 29, 345605.

    Article  Google Scholar 

  23. Thomas, A.; Nair, P. V.; George Thomas, K. InP quantum dots: An environmentally friendly material with resonance energy transfer requisites. J. Phys. Chem. C 2014, 118, 3838–3845.

    Article  CAS  Google Scholar 

  24. Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

    Article  CAS  Google Scholar 

  25. Chen, B.; Li, D. Y.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454.

    Article  CAS  Google Scholar 

  26. Jang, E.; Kim, Y.; Won, Y. H.; Jang, H.; Choi, S. M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 2020, 5, 1316–1327.

    Article  CAS  Google Scholar 

  27. Kim, T. G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L. W.; Jang, E.; Alivisatos, A. P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540.

    Article  CAS  Google Scholar 

  28. Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. The reaction of indium(III) chloride with tris(trimethylsilyl)phosphine: A novel route to indium phosphide. J. Chem. Soc., Chem. Commun. 1989, 359–360.

    Google Scholar 

  29. Wells, R. L.; Aubuchon, S. R.; Kher, S. S.; Lube, M. S.; White, P. S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In. cntdot. P(SiMe3)3. Chem. Mater. 1995, 7, 793–800.

    Article  CAS  Google Scholar 

  30. Guzelian, A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.

    Article  CAS  Google Scholar 

  31. Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. Synthesis and characterization of InP, GaP, and GainP2 quantum dots. J. Phys. Chem. 1995, 99, 7754–7759.

    Article  CAS  Google Scholar 

  32. Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.

    Article  CAS  Google Scholar 

  33. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  34. Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

    Article  CAS  Google Scholar 

  35. Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

    Article  CAS  Google Scholar 

  36. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  CAS  Google Scholar 

  37. Ho, C. H.; Tsai, C. P.; Chung, C. C.; Tsai, C. Y.; Chen, F. R.; Lin, H. J.; Lai, C. H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753–1760.

    Article  CAS  Google Scholar 

  38. Wang, A. F.; Yan, X. X.; Zhang, M.; Sun, S. B.; Yang, M.; Shen, W.; Pan, X. Q.; Wang, P.; Deng, Z. T. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 2016, 28, 8132–8140.

    Article  CAS  Google Scholar 

  39. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y. J.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.

    Article  CAS  Google Scholar 

  40. de Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162.

    Article  Google Scholar 

  41. Lucey, D. W.; MacRae, D. J.; Furis, M.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chem. Mater. 2005, 17, 3754–3762.

    Article  CAS  Google Scholar 

  42. van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.

    Article  CAS  Google Scholar 

  43. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  CAS  Google Scholar 

  44. Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24, 4180–4185.

    Article  CAS  Google Scholar 

  45. Park, J.; Jayaraman, A.; Wang, X. D.; Zhao, J.; Han, H. S. Nanocrystal precursor incorporating separated reaction mechanisms for nucleation and growth to unleash the potential of heat-up synthesis. ACS Nano 2020, 14, 11579–11593.

    Article  CAS  Google Scholar 

  46. Green, M.; O’Brien, P. The synthesis of III-V semiconductor nanoparticles using indium and gallium diorganophosphides as single-molecular precursors. J. Mater. Chem. 2004, 14, 629–636.

    Article  CAS  Google Scholar 

  47. Li, C. L.; Ando, M.; Enomoto, H.; Murase, N. Highly luminescent water-soluble InP/ZnS nanocrystals prepared via reactive phase transfer and photochemical processing. J. Phys. Chem. C 2008, 112, 20190–20199.

    Article  CAS  Google Scholar 

  48. Byun, H. J.; Lee, J. C.; Yang, H. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments. J. Colloid Interface Sci. 2011, 355, 35–41.

    Article  CAS  Google Scholar 

  49. Qian, Y. T. Solvothermal synthesis of nanocrystalline III-V semiconductors. Adv. Mater. 1999, 11, 1101–1102.

    Article  CAS  Google Scholar 

  50. Byun, H. J.; Song, W. S.; Yang, H. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology 2011, 22, 235605.

    Article  Google Scholar 

  51. Clark, M. D.; Kumar, S. K.; Owen, J. S.; Chan, E. M. Focusing nanocrystal size distributions via production control. Nano Lett. 2011, 11, 1976–1980.

    Article  CAS  Google Scholar 

  52. Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.

    Article  CAS  Google Scholar 

  53. Ramasamy, P.; Ko, K. J.; Kang, J. W.; Lee, J. S. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence. Chem. Mater. 2018, 30, 3643–3647.

    Article  CAS  Google Scholar 

  54. Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P. Cation exchange: A versatile tool for nanomaterials synthesis. J. Phys. Chem. C 2013, 117, 19759–19770.

    Article  CAS  Google Scholar 

  55. Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    Article  CAS  Google Scholar 

  56. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

    Article  CAS  Google Scholar 

  57. Beberwyck, B. J.; Alivisatos, A. P. Ion exchange synthesis of III-V nanocrystals. J. Am. Chem. Soc. 2012, 134, 19977–19980.

    Article  CAS  Google Scholar 

  58. Huang, F.; Bi, C. H.; Guo, R. Q.; Zheng, C.; Ning, J. J.; Tian, J. J. Synthesis of colloidal blue-emitting InP/ZnS core/shell quantum dots with the assistance of copper cations. J. Phys. Chem. Lett. 2019, 10, 6720–6726.

    Article  CAS  Google Scholar 

  59. De Trizio, L.; Gaspari, R.; Bertoni, G.; Kriegel, I.; Moretti, L.; Scotognella, F.; Maserati, L.; Zhang, Y.; Messina, G. C.; Prato, M. et al. Cu3−xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 2015, 27, 1120–1128.

    Article  CAS  Google Scholar 

  60. Koh, S.; Kim, W. D.; Bae, W. K.; Lee, Y. K.; Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3−xP nanoplatelets into InP crystals. Chem. Mater. 2019, 37, 1990–2001.

    Article  Google Scholar 

  61. Steimle, B. C.; Fenton, J. L.; Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 2020, 367, 418–424.

    Article  CAS  Google Scholar 

  62. Shan, X. Y.; Li, B. H.; Ji, B. T. Synthesis of wurtzite In and Ga phosphide quantum dots through cation exchange reactions. Chem. Mater. 2021, 33, 5223–5232.

    Article  CAS  Google Scholar 

  63. Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929.

    Article  CAS  Google Scholar 

  64. Rogach, A. L. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. Vienna: Springer, 2008.

    Book  Google Scholar 

  65. Yang, H. Q.; Yin, W. Y.; Zhao, H.; Yang, R. L.; Song, Y. Z. A complexant-assisted hydrothermal procedure for growing well-dispersed InP nanocrystals. J. Phys. Chem. Solids 2008, 99, 1017–1022.

    Article  Google Scholar 

  66. Wei, S.; Lu, J.; Yu, W. C.; Qian, Y. T. InP nanocrystals via surfactant-aided hydrothermal synthesis. J. Appl. Phys. 2004, 95, 3683–3688.

    Article  CAS  Google Scholar 

  67. Wei, S.; Lu, J.; Zeng, L.; Yu, W. C.; Qian, Y. T. Hydrothermal synthesis of InP semiconductor nanocrystals. Chem. Lett. 2002, 37, 1034–1035.

    Article  Google Scholar 

  68. Liu, Z. P.; Kumbhar, A.; Xu, D.; Zhang, J.; Sun, Z. Y.; Fang, J. Y. Coreduction colloidal synthesis of III-V nanocrystals: The case of InP. Angew. Chem., Int. Ed. 2008, 47, 3540–3542.

    Article  CAS  Google Scholar 

  69. Jun, K. W.; Khanna, P. K.; Hong, K. B.; Baeg, J. O.; Suh, Y. D. Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route. Mater. Chem. Phys. 2006, 96, 494–497.

    Article  CAS  Google Scholar 

  70. Green, M.; O’Brien, P. A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chem. Commun. 1998, 2459–2460.

    Google Scholar 

  71. Gao, S. M.; Lu, J.; Chen, N.; Zhao, Y.; Xie, Y. Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement. Chem. Commun. 2002, 3064–3065.

    Google Scholar 

  72. Yan, P.; Xie, Y.; Wang, W. Z.; Liu, F. Y.; Qian, Y. T. A low-temperature route to InP nanocrystals. J. Mater. Chem. 1999, 9, 1831–1833.

    Article  CAS  Google Scholar 

  73. Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.

    Article  CAS  Google Scholar 

  74. Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.

    Article  CAS  Google Scholar 

  75. Protière, M.; Reiss, P. Amine-induced growth of an In2O3 shell on colloidal InP nanocrystals. Chem. Commun. 2007, 2417–2419.

    Google Scholar 

  76. Gary, D. C.; Cossairt, B. M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 2013, 55, 2463–2469.

    Article  Google Scholar 

  77. Buffard, A.; Dreyfuss, S.; Nadal, B.; Heuclin, H.; Xu, X. Z.; Patriarche, G.; Mézailles, N.; Dubertret, B. Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 2016, 28, 5925–5934.

    Article  CAS  Google Scholar 

  78. Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 2011, 5, 307–317.

    Article  Google Scholar 

  79. Li, L.; Protière, M.; Reiss, P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem. Mater. 2008, 20, 2621–2623.

    Article  CAS  Google Scholar 

  80. Li, C. L.; Masanori, A.; Norio, M. Facile preparation of highly luminescent InP nanocrystals by a solvothermal route. Chem. Lett. 2008, 37, 856–857.

    Article  CAS  Google Scholar 

  81. Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929.

    Article  CAS  Google Scholar 

  82. Song, W. S.; Lee, H. S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 2011, 75, 1750.

    Google Scholar 

  83. Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.

    Article  CAS  Google Scholar 

  84. Mundy, M. E.; Eagle, F. W.; Hughes, K. E.; Gamelin, D. R.; Cossairt, B. M. Synthesis and spectroscopy of emissive, surface-modified, copper-doped indium phosphide nanocrystals. ACS Mater. Lett. 2020, 2, 576–581.

    Article  CAS  Google Scholar 

  85. Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011, 3, 2552–2559.

    Article  CAS  Google Scholar 

  86. Yamazaki, K.; Tanaka, A.; Hirata, M.; Omura, M.; Makita, Y.; Inoue, N.; Sugio, K.; Sugimachi, K. Long term pulmonary toxicity of indium arsenide and indium phosphide instilled intratracheally in hamsters. J. Occup. Health 2000, 42, 169–178.

    Article  CAS  Google Scholar 

  87. National Toxicology Program. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Ser. 2001, 7–340. (Please note that the volume number information of this literature was not found, and revise, thanks!)

    Google Scholar 

  88. Gottschling, B. C.; Maronpot, R. R.; Hailey, J. R.; Peddada, S.; Moomaw, C. R.; Klaunig, J. E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci. 2001, 64, 28–40.

    Article  CAS  Google Scholar 

  89. Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J.; Maitra, A.; Prasad, P. N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510.

    Article  CAS  Google Scholar 

  90. Bahmani Jalali, H.; Sadeghi, S.; Sahin, M.; Ozturk, H.; Ow-Yang, C. W.; Nizamoglu, S. Colloidal aluminum antimonide quantum dots. Chem. Mater. 2019, 31, 4743–4747.

    Article  CAS  Google Scholar 

  91. Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

    Article  CAS  Google Scholar 

  92. Adam, S.; Talapin, D. V.; Borchert, H.; Lobo, A.; McGinley, C.; de Castro, A. R. B.; Haase, M.; Weller, H.; Möller, T. The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 2005, 123, 084706.

    Article  CAS  Google Scholar 

  93. Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

    Article  CAS  Google Scholar 

  94. Fu, H. X.; Zunger, A. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 1997, 56, 1496–1508.

    Article  CAS  Google Scholar 

  95. Cihan, A. F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum, U.; Yaglioglu, H. G.; Elmali, A.; Demir, H. V. Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission. J. Phys. Chem. Lett. 2013, 4, 4146–4152.

    Article  CAS  Google Scholar 

  96. Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

    Article  CAS  Google Scholar 

  97. Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-exciton optical gain in semiconductor nanocrystals. Nature 2007, 447, 441–446.

    Article  CAS  Google Scholar 

  98. Kelestemur, Y.; Olutas, M.; Delikanli, S.; Guzelturk, B.; Akgul, M. Z.; Demir, H. V. Type-II colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets. J. Phys. Chem. C 2015, 119, 2177–2185.

    Article  CAS  Google Scholar 

  99. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

    Article  CAS  Google Scholar 

  100. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

    Article  CAS  Google Scholar 

  101. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

    Article  CAS  Google Scholar 

  102. Karatum, O.; Eren, G. O.; Melikov, R.; Onal, A.; Ow-Yang, C. W.; Sahin, M.; Nizamoglu, S. Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Sci. Rep. 2021, 11, 2460.

    Article  CAS  Google Scholar 

  103. Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.

    Article  CAS  Google Scholar 

  104. Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

    Article  CAS  Google Scholar 

  105. Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

    Article  CAS  Google Scholar 

  106. Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

    Article  CAS  Google Scholar 

  107. Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

    Article  CAS  Google Scholar 

  108. Haubold, S.; Haase, M.; Kornowski, A.; Weller, H. Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem 2001, 2, 331–334.

    Article  CAS  Google Scholar 

  109. Xu, S.; Klama, F.; Ueckermann, H.; Hoogewerff, J.; Clayden, N.; Nann, T. Optical and surface characterisation of capping ligands in the preparation of InP/ZnS quantum dots. Sci. Adv. Mater. 2009, 1, 125–137.

    Article  CAS  Google Scholar 

  110. Bahmani Jalali, H.; Melikov, R.; Sadeghi, S.; Nizamoglu, S. Excitonic energy transfer within InP/ZnS quantum dot Langmuir-Blodgett assemblies. J. Phys. Chem. C 2018, 122, 11616–11622.

    Article  CAS  Google Scholar 

  111. Xu, S.; Kumar, S.; Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 2006, 128, 1054–1055.

    Article  CAS  Google Scholar 

  112. Ziegler, J.; Merkulov, A.; Grabolle, M.; Resch-Genger, U.; Nann, T. High-quality ZnS shells for CdSe nanoparticles: Rapid microwave synthesis. Langmuir 2007, 23, 7751–7759.

    Article  CAS  Google Scholar 

  113. Karatum, O.; Jalali, H. B.; Sadeghi, S.; Melikov, R.; Srivastava, S. B.; Nizamoglu, S. Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics 2019, 6, 939–946.

    Article  CAS  Google Scholar 

  114. Sadeghi, S.; Bahmani Jalali, H.; Melikov, R.; Ganesh Kumar, B.; Mohammadi Aria, M.; Ow-Yang, C. W.; Nizamoglu, S. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl. Mater. Interfaces 2018, 10, 12975–12982.

    Article  CAS  Google Scholar 

  115. Shen, W.; Tang, H. Y.; Yang, X. L.; Cao, Z. L.; Cheng, T.; Wang, X. Y.; Tan, Z. A.; You, J. B.; Deng, Z. T. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. J. Mater. Chem. C 2017, 5, 8243–8249.

    Article  CAS  Google Scholar 

  116. Shirazi, R.; Kovacs, A.; Corell, D. D.; Gritti, C.; Thorseth, A.; Dam-Hansen, C.; Petersen, P. M.; Kardynal, B. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals. J. Lumin. 2014, 145, 936–939.

    Article  CAS  Google Scholar 

  117. Kim, M. R.; Chung, J. H.; Lee, M.; Lee, S.; Jang, D. J. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. J. Colloid Interface Sci. 2010, 350, 5–9.

    Article  CAS  Google Scholar 

  118. Mushonga, P.; Ouma, I. L. A.; Madiehe, A. M.; Meyer, M.; Dejene, F. B.; Onani, M. O. Synthesis, optical and morphological characterization of doped InP/ZnSe NCs. Phys. B: Condens. Matter 2014, 439, 189–192.

    Article  CAS  Google Scholar 

  119. Lee, W.; Lee, C.; Kim, B.; Choi, Y.; Chae, H. Synthesis of blue-emissive InP/GaP/ZnS quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands. Nanomaterials 2020, 10, 2171.

    Article  CAS  Google Scholar 

  120. Park, J. P.; Lee, J. J.; Kim, S. W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci. Rep. 2016, 6, 30094.

    Article  CAS  Google Scholar 

  121. Liu, A.; Xing, X.; Cai, H.; Zeng, Y.; Guo, J.; Li, H.; Yan, W.; Zhou, F.; Song, J.; Qu, J. Cd - free InP/ZnSeS quantum dots for ultrahigh - resolution imaging of stimulated emission depletion. Journal of Biophotonics 2021, 14, e202100230.

    Article  CAS  Google Scholar 

  122. Zhang, J.; Wang, J.; Yan, T.; Peng, Y. A.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152–8160.

    Article  CAS  Google Scholar 

  123. Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. Inp@znses, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 2011, 23, 4459–4463.

    Article  CAS  Google Scholar 

  124. Kim, Y.; Ippen, C.; Greco, T.; Lee, J.; Oh, M. S.; Han, C. J.; Wedel, A.; Kim, J. Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes. Opt. Mater. Express 2014, 4, 1436–1443.

    Article  CAS  Google Scholar 

  125. Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 2017, 29, 6893–6899.

    Article  CAS  Google Scholar 

  126. Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; Hwang, S.; Lee, J. E.; Kim, S. K. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 3804–3809.

    Article  CAS  Google Scholar 

  127. Ippen, C.; Greco, T.; Wedel, A. InP/ZnSe/ZnS: A novel multishell system for InP quantum dots for improved luminescence efficiency and its application in a light-emitting device. J. Inf. Display 2012, 13, 91–95.

    Article  CAS  Google Scholar 

  128. Chandrasekaran, V.; Tessier, M. D.; Dupont, D.; Geiregat, P.; Hens, Z.; Brainis, E. Nearly blinking-free, high-purity singlephoton emission by colloidal InP/ZnSe quantum dots. Nano Lett. 2017, 17, 6104–6109.

    Article  CAS  Google Scholar 

  129. Reid, K. R.; McBride, J. R.; Freymeyer, N. J.; Thal, L. B.; Rosenthal, S. J. Chemical structure, ensemble and single-particle spectroscopy of thick-shell InP-ZnSe quantum dots. Nano Lett. 2018, 18, 709–716.

    Article  CAS  Google Scholar 

  130. Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater. 2008, 20, 4068–4073.

    Article  CAS  Google Scholar 

  131. Mutlugun, E.; Hernandez-Martinez, P. L.; Eroglu, C.; Coskun, Y.; Erdem, T.; Sharma, V. K.; Unal, E.; Panda, S. K.; Hickey, S. G.; Gaponik, N. et al. Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots. Nano Lett. 2012, 12, 3986–3993.

    Article  CAS  Google Scholar 

  132. Gao, S.; Zhang, C. F.; Liu, Y. J.; Su, H. P.; Wei, L.; Huang, T.; Dellas, N.; Shang, S. Z.; Mohney, S. E.; Wang, J. K. et al. Lasing from colloidal InP/ZnS quantum dots. Opt. Express 2011, 19, 5528–5535.

    Article  CAS  Google Scholar 

  133. Macdonald, T. J.; Tune, D. D.; Dewi, M. R.; Bear, J. C.; McNaughter, P. D.; Mayes, A. G.; Skinner, W. M.; Parkin, I. P.; Shapter, J. G.; Nann, T. SWCNT photocathodes sensitised with InP/ZnS core-shell nanocrystals. J. Mater. Chem. C 2016, 4, 3379–3384.

    Article  CAS  Google Scholar 

  134. Yu, S.; Fan, X. B.; Wang, X.; Li, J. G.; Zhang, Q.; Xia, A. D.; Wei, S. Q.; Wu, L. Z.; Zhou, Y.; Patzke, G. R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009.

    Article  Google Scholar 

  135. Lim, M.; Lee, W.; Bang, G.; Lee, W. J.; Park, Y.; Kwon, Y.; Jung, Y.; Kim, S.; Bang, J. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Nanoscale 2019, 11, 10463–10471.

    Article  CAS  Google Scholar 

  136. Wu, K. F.; Song, N. H.; Liu, Z.; Zhu, H. M.; Rodríguez-Córdoba, W.; Lian, T. Q. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 2013, 117, 7561–7570.

    Article  CAS  Google Scholar 

  137. Nguyen, T. L.; Michael, M.; Mulvaney, P. Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 2014, 26, 4274–4279.

    Article  CAS  Google Scholar 

  138. Liu, J. F.; Bei, Y. Y.; Wu, H. P.; Shen, D.; Gong, J. Z.; Li, X. G.; Wang, Y. W.; Jiang, N. P.; Jiang, J. Z. Synthesis of relatively monodisperse Zno nanocrystals from a precursor zinc 2,4-pentanedionate. Mater. Lett. 2007, 61, 2837–2840.

    Article  CAS  Google Scholar 

  139. Sadeghi, S.; Bahmani Jalali, H.; Srivastava, S. B.; Melikov, R.; Baylam, I.; Sennaroglu, A.; Nizamoglu, S. High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 2020, 23, 101272.

    Article  CAS  Google Scholar 

  140. Xie, R. G.; Peng, X. G. Synthesis of cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651.

    Article  CAS  Google Scholar 

  141. Erickson, C. S.; Bradshaw, L. R.; McDowall, S.; Gilbertson, J. D.; Gamelin, D. R.; Patrick, D. L. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 2014, 8, 3461–3467.

    Article  CAS  Google Scholar 

  142. Beaulac, R.; Archer, P. I.; Gamelin, D. R. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals. J. Solid State Chem. 2008, 181, 1582–1589.

    Article  CAS  Google Scholar 

  143. Ronda, C. Luminescence: From Theory to Applications. Weinheim: Wiley-VCH, 2008.

    Google Scholar 

  144. Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.

    Article  CAS  Google Scholar 

  145. Lim, Y. T.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2003, 2, 50–64.

    Article  CAS  Google Scholar 

  146. Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 2013, 65, 622–648.

    Article  CAS  Google Scholar 

  147. Koh, S.; Eom, T.; Kim, W. D.; Lee, K.; Lee, D.; Lee, Y. K.; Kim, H.; Bae, W. K.; Lee, D. C. Zinc-phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots. Chem. Mater. 2017, 29, 6346–6355.

    Article  CAS  Google Scholar 

  148. Thuy, U. T. D.; Reiss, P.; Liem, N. Q. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 2010, 97, 193104.

    Article  Google Scholar 

  149. Mordvinova, N. E.; Vinokurov, A. A.; Lebedev, O. I.; Kuznetsova, T. A.; Dorofeev, S. G. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: Doping and surface passivation. Beilstein J. Nanotechnol. 2015, 6, 1237–1246.

    Article  CAS  Google Scholar 

  150. Xi, L. F.; Cho, D. Y.; Besmehn, A.; Duchamp, M.; Grützmacher, D.; Lam, Y. M.; Kardynal, B. E. Effect of zinc incorporation on the performance of red light emitting InP core nanocrystals. Inorg. Chem. 2016, 55, 8381–8386.

    Article  CAS  Google Scholar 

  151. Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J. Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots. ACS Nano 2016, 10, 4754–4762.

    Article  CAS  Google Scholar 

  152. Taylor, D. A.; Teku, J. A.; Cho, S.; Chae, W. S.; Jeong, S. J.; Lee, J. S. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 2021, 33, 4399–4407.

    Article  CAS  Google Scholar 

  153. Sadekar, H. K.; Ghule, A. V.; Sharma, R. Bandgap engineering by substitution of S by Se in nanostructured ZnS1−xSex thin films grown by soft chemical route for nontoxic optoelectronic device applications. J. Alloys Compd. 2011, 509, 5525–5531.

    Article  CAS  Google Scholar 

  154. Kim, K.; Lee, H.; Ahn, J.; Jeong, S. Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS. Appl. Phys. Lett. 2012, 101, 073107.

    Article  Google Scholar 

  155. Yeom, J. E.; Shin, D. H.; Lampande, R.; Jung, Y. H.; Mude, N. N.; Park, J. H.; Kwon, J. H. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep homo level hole transport layer. ACS Energy Lett. 2020, 5, 3868–3875.

    Article  CAS  Google Scholar 

  156. Pietra, F.; Kirkwood, N.; De Trizio, L.; Hoekstra, A. W.; Kleibergen, L.; Renaud, N.; Koole, R.; Baesjou, P.; Manna, L.; Houtepen, A. J. Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem. Mater. 2017, 29, 5192–5199.

    Article  CAS  Google Scholar 

  157. Ning, Z. J.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X. Z.; Zhitomirsky, D.; Sargent, E. H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295–6299.

    Article  CAS  Google Scholar 

  158. Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

    Article  CAS  Google Scholar 

  159. Woo, J. Y.; Ko, J. H.; Song, J. H.; Kim, K.; Choi, H.; Kim, Y. H.; Lee, D. C.; Jeong, S. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 2014, 136, 8883–8886.

    Article  CAS  Google Scholar 

  160. Scheele, M.; Engel, J. H.; Ferry, V. E.; Hanifi, D.; Liu, Y.; Alivisatos, A. P. Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids. ACS Nano 2013, 7, 6774–6781.

    Article  CAS  Google Scholar 

  161. Oh, S. J.; Berry, N. E.; Choi, J. H.; Gaulding, E. A.; Lin, H. F.; Paik, T.; Diroll, B. T.; Muramoto, S.; Murray, C. B.; Kagan, C. R. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559–1566.

    Article  CAS  Google Scholar 

  162. Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Sung, P.; Sung, J.; Ye, X. C.; Zhao, T. S.; Diroll, B. T.; Murray, C. B. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352, 205–208.

    Article  CAS  Google Scholar 

  163. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  Google Scholar 

  164. Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol 2009, 4, 40–44.

    Article  CAS  Google Scholar 

  165. Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Quantum dot field effect transistors. Mater. Today 2013, 16, 312–325.

    Article  CAS  Google Scholar 

  166. Liu, Y.; Tolentino, J.; Gibbs, M.; Ihly, R.; Perkins, C. L.; Liu, Y.; Crawford, N.; Hemminger, J. C.; Law, M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·v−1·s−1. Nano Lett. 2013, 13, 1578–1587.

    Article  CAS  Google Scholar 

  167. Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

    Article  CAS  Google Scholar 

  168. Bronstein, N. D.; Li, L. F.; Xu, L.; Yao, Y.; Ferry, V. E.; Alivisatos, A. P.; Nuzzo, R. G. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 2014, 8, 44–53.

    Article  CAS  Google Scholar 

  169. Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

    Article  CAS  Google Scholar 

  170. Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  CAS  Google Scholar 

  171. Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  172. Mićić, O. I.; Sprague, J.; Lu, Z. H.; Nozik, A. J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152.

    Article  Google Scholar 

  173. Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659–12663.

    Article  CAS  Google Scholar 

  174. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.

    Article  CAS  Google Scholar 

  175. Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A versatile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 2007, 129, 482–483.

    Article  CAS  Google Scholar 

  176. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  CAS  Google Scholar 

  177. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

    Article  CAS  Google Scholar 

  178. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.

    Article  CAS  Google Scholar 

  179. Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.

    Article  CAS  Google Scholar 

  180. Doty, R. C.; Tshikhudo, T. R.; Brust, M.; Fernig, D. G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 2005, 17, 4630–4635.

    Article  CAS  Google Scholar 

  181. Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996.

    Article  CAS  Google Scholar 

  182. Roullier, V.; Clarke, S.; You, C. J.; Pinaud, F.; Gouzer, G.; Schaible, D.; Marchi-Artzner, V.; Piehler, J.; Dahan, M. High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett. 2009, 9, 1228–1234.

    Article  CAS  Google Scholar 

  183. Lévy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084.

    Article  Google Scholar 

  184. Reinhold, H.; Mikolajczak, U.; Brand, I.; Dosche, C.; Borchert, H.; Parisi, J. R.; Scheunemann, D. Shorter is not always better: Analysis of a ligand exchange procedure for CuInS2 nanoparticles as the photovoltaic absorber material. J. Phys. Chem. C 2020, 124, 19922–19928.

    Article  CAS  Google Scholar 

  185. Kim, S.; Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 2003, 125, 14652–14653.

    Article  CAS  Google Scholar 

  186. Zuzuarregui, A.; Morant-Miñana, M. C. Research Perspectives on Functional Micro- and Nanoscale Coatings. Hershey: IGI Global, 2016.

    Book  Google Scholar 

  187. Tamang, S.; Beaune, G.; Texier, I.; Reiss, P. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. ACS Nano 2011, 5, 9392–9402.

    Article  CAS  Google Scholar 

  188. Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

    Article  CAS  Google Scholar 

  189. Chen, K. Q.; Zhong, Q. H.; Chen, W.; Sang, B. H.; Wang, Y. W.; Yang, T. Q.; Liu, Y. L.; Zhang, Y. P.; Zhang, H. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900991.

    Article  Google Scholar 

  190. Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P. Compact and highly stable quantum dots through optimized aqueous phase transfer. In Proceedings of SPIE 7909, Colloidal Quantum Dots/Nanocrystals for Biomedical Applications VI, San Francisco, California, United States, 2011, pp 79091B.

  191. Srivastava, V.; Kamysbayev, V.; Hong, L.; Dunietz, E.; Klie, R. F.; Talapin, D. V. Colloidal chemistry in molten salts: Synthesis of luminescent In1−xGaxP and In1−xGaxAs quantum dots. J. Am. Chem. Soc. 2018, 140, 12144–12151.

    Article  CAS  Google Scholar 

  192. Saeboe, A. M.; Nikiforov, A. Y.; Toufanian, R.; Kays, J. C.; Chern, M.; Casas, J. P.; Han, K.; Piryatinski, A.; Jones, D.; Dennis, A. M. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021, 21, 3271–3279.

    Article  CAS  Google Scholar 

  193. Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.

    Article  CAS  Google Scholar 

  194. Han, M. G.; Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett. 2021, 6, 1577–1585.

    Article  CAS  Google Scholar 

  195. Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

    Article  CAS  Google Scholar 

  196. Iwasaki, Y.; Motomura, G.; Ogura, K.; Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 2020, 117, 111104.

    Article  CAS  Google Scholar 

  197. Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

    Article  CAS  Google Scholar 

  198. Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020, 5, 1095–1106.

    Article  CAS  Google Scholar 

  199. Kim, K.; Han, C. S.; Jeong, S. Design and synthesis of photostable multi-shell Cd-free nanocrystalquantum dots for LED applications. J. Mater. Chem. 2012, 22, 21370–21372.

    Article  CAS  Google Scholar 

  200. Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

    Article  CAS  Google Scholar 

  201. Zhang, Z. L.; Liu, D.; Li, D. Z.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Han, M. Y.; Wang, Y.; Yang, W. S. Dual emissive Cu: Inp/zns/InP/ZnS nanocrystals: Single-source “greener “ emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes. Chem. Mater. 2015, 27, 1405–1411.

    Article  CAS  Google Scholar 

  202. Eren, G. O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030.

    Article  CAS  Google Scholar 

  203. Franke, D.; Harris, D. K.; Xie, L. S.; Jensen, K. F.; Bawendi, M. G. The unexpected influence of precursor conversion rate in the synthesis of III-V quantum dots. Angew. Chem. 2015, 127, 14507–14511.

    Article  Google Scholar 

  204. Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441.

    Article  CAS  Google Scholar 

  205. Janke, E. M.; Williams, N. E.; She, C. X.; Zherebetskyy, D.; Hudson, M. H.; Wang, L. L.; Gosztola, D. J.; Schaller, R. D.; Lee, B.; Sun, C. J. et al. Origin of broad emission spectra in InP quantum dots: Contributions from structural and electronic disorder. J. Am. Chem. Soc. 2018, 140, 15791–15803.

    Article  CAS  Google Scholar 

  206. Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2, 96.

    Article  CAS  Google Scholar 

  207. Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

    Article  CAS  Google Scholar 

  208. Mićić, O. I.; Jones, K. M.; Cahill, A.; Nozik, A. J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 1998, 102, 9791–9796.

    Article  Google Scholar 

  209. Micic, O. I.; Smith, B. B.; Nozik, A. J. Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J. Phys. Chem. B 2000, 104, 12149–12156.

    Article  CAS  Google Scholar 

  210. Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072.

    Article  CAS  Google Scholar 

  211. Ren, S.; Shou, C.; Jin, S.; Chen, G.; Han, S.; Chen, Z.; Chen, X.; Yang, S.; Guo, Y.; Tu, C.-C. Silicon quantum dot luminescent solar concentrators and downshifters with antireflection coatings for enhancing perovskite solar cell performance. ACS Photonics 2021, 8, 2392–2399.

    Article  CAS  Google Scholar 

  212. Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 2017, 11, 177–185.

    Article  CAS  Google Scholar 

  213. Wu, K. F.; Li, H. B.; Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105–110.

    Article  CAS  Google Scholar 

  214. Bahmani Jalali, H.; Sadeghi, S.; Baylam, I.; Han, M.; Ow-Yang, C. W.; Sennaroglu, A.; Nizamoglu, S. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Res. 2021, 14, 1488–1494.

    Article  CAS  Google Scholar 

  215. Eren, G. O.; Sadeghi, S.; Shahzad, M.; Nizamoglu, S. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area. STAR protocols 2021, 2, 100664.

    Article  CAS  Google Scholar 

  216. Wang, B. L.; Liu, H. H.; Zhang, B. J.; Han, Y. M.; Shen, C. H.; Lin, Q. K.; Chen, H. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics. Colloids Surf. B: Biointerfaces 2016, 141, 483–490.

    Article  CAS  Google Scholar 

  217. Sackmann, E. K.; Fulton, A. L.; Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189.

    Article  CAS  Google Scholar 

  218. Sadeghi, S.; Mutcu, S. E.; Srivastava, S. B.; Aydindogan, G.; Caynak, S.; Karslı, K.; Melikov, R.; Nizamoglu, S. High quality quantum dots polymeric films as color converters for smart phone display technology. Mater. Res. Express 2018, 6, 035015.

    Article  Google Scholar 

  219. Sadeghi, S.; Abkenar, S. K.; Ow-Yang, C. W.; Nizamoglu, S. Efficient white LEDs using liquid-state magic-sized CdSe quantum dots. Sci. Rep. 2019, 9, 10061.

    Article  Google Scholar 

  220. Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-area luminescent solar concentrators based on “stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2006, 100, 074510.

    Google Scholar 

  221. Hanna, M. C.; Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.

    Article  Google Scholar 

  222. Li, W. J.; Zhong, X. H. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2015, 6, 796–806.

    Article  CAS  Google Scholar 

  223. Yang, Z. S.; Chen, C. Y.; Roy, P.; Chang, H. T. Quantum dotsensitized solar cells incorporating nanomaterials. Chem. Commun. 2011, 47, 9561–9571.

    Article  CAS  Google Scholar 

  224. Li, W. J.; Zhong, X. H. Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells. Acta Phys. Sin. 2015, 64, 038806.

    Article  Google Scholar 

  225. Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14, 3153–3156.

    Article  CAS  Google Scholar 

  226. Yang, S. L.; Zhao, P. X.; Zhao, X. C.; Qu, L. T.; Lai, X. C. InP and Sn: InP based quantum dot sensitized solar cells. J. Mater. Chem. A 2015, 3, 21922–21929.

    Article  CAS  Google Scholar 

  227. Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

    Article  CAS  Google Scholar 

  228. Mårtensson, T.; Carlberg, P.; Borgström, M.; Montelius, L.; Seifert, W.; Samuelson, L. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 2004, 4, 699–702.

    Article  Google Scholar 

  229. Altıntas, Y.; Talpur, M. Y.; Mutlugun, E. Efficient forster resonance energy transfer donors of In (Zn)P/ZnS quantum dots. J. Phys. Chem. C 2017, 121, 3034–3043.

    Article  Google Scholar 

  230. Shi, K. X.; Li, J. H.; Xiao, Y. C.; Guo, L.; Chu, X. Y.; Zhai, Y. J.; Zhang, B. L.; Lu, D. X.; Rosei, F. High-response, ultrafast-speed, and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes. ACS Appl. Mater. Interfaces 2020, 12, 31382–31391.

    Article  CAS  Google Scholar 

  231. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 1948, 437, 55–75.

    Article  Google Scholar 

  232. Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

    Article  Google Scholar 

  233. Chakraborty, I. N.; Roy, S.; Devatha, G.; Rao, A.; Pillai, P. P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions. Chem. Mater. 2019, 31, 2258–2262.

    Article  CAS  Google Scholar 

  234. Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett. 2020, 20, 6263–6271.

    Article  CAS  Google Scholar 

  235. Yu, S.; Xie, Z. H.; Ran, M. X.; Wu, F.; Zhong, Y. Q.; Dan, M.; Zhou, Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J. Colloid Interface Sci. 2020, 573, 71–77.

    Article  CAS  Google Scholar 

  236. Nann, T.; Ibrahim, S. K.; Woi, P. M.; Xu, S.; Ziegler, J.; Pickett, C. J. Water splitting by visible light: A nanophotocathode for hydrogen production. Angew. Chem., Int. Ed. 2010, 49, 1574–1577.

    Article  CAS  Google Scholar 

  237. Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371.

    Article  CAS  Google Scholar 

  238. Han, M.; Yildiz, E.; Kaleli, H. N.; Karaz, S.; Eren, G. O.; Dogru - Yuksel, I. B.; Senses, E.; Şahin, A.; Nizamoglu, S. Tissue - like optoelectronic neural interface enabled by pedot: PSS hydrogel for cardiac and neural stimulation. Adv. Healthcare Mater. 2021, 2102160.

    Google Scholar 

  239. Han, M.; Srivastava, S. B.; Yildiz, E.; Melikov, R.; Surme, S.; Dogru-Yuksel, I. B.; Kavakli, I. H.; Sahin, A.; Nizamoglu, S. Organic photovoltaic pseudocapacitors for neurostimulation. ACS Appl. Mater. Interfaces 2020, 12, 42997–43008.

    Article  CAS  Google Scholar 

  240. Zhang, M. L.; Tang, Z. J.; Liu, X. L. Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200.

    Article  Google Scholar 

  241. Pappas, T. C.; Wickramanyake, W. M. S.; Jan, E.; Motamedi, M.; Brodwick, M.; Kotov, N. A. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 2007, 7, 513–519.

    Article  CAS  Google Scholar 

  242. Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288.

    Article  CAS  Google Scholar 

  243. Han, M.; Jalali, H. B.; Yildiz, E.; Qureshi, M. H.; Sahin, A.; Nizamoglu, S. Photovoltaic neurointerface based on aluminum antimonide nanocrystals. Commun. Mater. 2021, 2, 19.

    Article  CAS  Google Scholar 

  244. Lugo, K.; Miao, X. Y.; Rieke, F.; Lin, L. Y. Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomed. Opt. Express 2012, 3, 447–454.

    Article  CAS  Google Scholar 

  245. Molokanova, E.; Bartel, J.; Zhao, W.; Naasani, I.; Ignatius, M.; Treadway, J.; Savtchenko, A. Quantum dots move beyond fluorescence imaging the unique properties of quantum dots allow them to be optimized for voltage sensing and for light-controlled electrical activation of cells. Biophotonics Int 2008, 15, 26.

    Google Scholar 

  246. Srivastava, S. B.; Melikov, R.; Yildiz, E.; Han, M.; Sahin, A.; Nizamoglu, S. Efficient photocapacitors via ternary hybrid photovoltaic optimization for photostimulation of neurons. Biomed. Opt. Express 2020, 11, 5237–5248.

    Article  CAS  Google Scholar 

  247. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.

    Article  CAS  Google Scholar 

  248. Kesim, C.; Han, M.; Yildiz, E.; Jalali, H. B.; Qureshi, M. H.; Hasanreisoglu, M.; Nizamoglu, S.; Sahin, A. Biocompatibility and neural stimulation capacity of aluminum antimonide nanocrystals biointerfaces for use in artificial vision. Invest. Ophthalmol. Vis. Sci. 2021, 62, 3217–3217.

    Google Scholar 

  249. Karatum, O.; Aria, M. M.; Eren, G. O.; Yildiz, E.; Melikov, R.; Srivastava, S. B.; Surme, S.; Dogru, I. B.; Bahmani Jalali, H.; Ulgut, B. et al. Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons. Front. Neurosci. 2021, 724.

    Google Scholar 

  250. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

    Article  CAS  Google Scholar 

  251. Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

    Article  CAS  Google Scholar 

  252. Xiao, P.; Huang, J. H.; Yan, D.; Luo, D. X.; Yuan, J.; Liu, B. Q.; Liang, D. Emergence of nanoplatelet light-emitting diodes. Materials 2018, 11, 1376.

    Article  Google Scholar 

  253. Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode. Chem. Phys. Lett. 2015, 619, 185–188.

    Article  CAS  Google Scholar 

  254. Fan, F. J.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G. et al. Colloidal CdSe1−xSx nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Lett. 2015, 15, 4611–4615.

    Article  CAS  Google Scholar 

  255. Chen, Z. Y.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2d colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 2014, 24, 295–302.

    Article  CAS  Google Scholar 

  256. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol 2014, 9, 891–895.

    Article  CAS  Google Scholar 

  257. Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Yeltik, A.; Delikanli, S.; Demir, H. V. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 5041–5050.

    Article  CAS  Google Scholar 

  258. Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

    Article  CAS  Google Scholar 

  259. Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

    Article  CAS  Google Scholar 

  260. Lhuillier, E.; Dayen, J. F.; Thomas, D. O.; Robin, A.; Doudin, B.; Dubertret, B. Nanoplatelets bridging a nanotrench: A new architecture for photodetectors with increased sensitivity. Nano Lett. 2015, 15, 1736–1742.

    Article  CAS  Google Scholar 

  261. Deng, Z.; Cao, D.; He, J.; Lin, S.; Lindsay, S. M.; Liu, Y. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 2012, 6, 6197–6207.

    Article  CAS  Google Scholar 

  262. Ithurria, S.; Dubertret, B. Quasi 2D colloidal cdse platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    Article  CAS  Google Scholar 

  263. Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well Structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

    Article  CAS  Google Scholar 

  264. Ondry, J. C.; Philbin, J. P.; Lostica, M.; Rabani, E.; Alivisatos, A. P. Colloidal synthesis path to 2d crystalline quantum dot superlattices. ACS nano 2020, 15, 2251–2262.

    Article  Google Scholar 

  265. Takami, S.; Hayakawa, R.; Wakayama, Y.; Chikyow, T. Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor. Nanotechnology 2010, 21, 134009.

    Article  Google Scholar 

  266. Cha, J. J.; Koski, K. J.; Huang, K. C. Y.; Wang, K. X.; Luo, W. D.; Kong, D. S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; Cui, Y. Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation. Nano Lett. 2013, 13, 5913–5918.

    Article  CAS  Google Scholar 

  267. Wang, Y.; Xiu, F. X.; Cheng, L. N.; He, L.; Lang, M.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170–1175.

    Article  CAS  Google Scholar 

  268. Somorjai, G. A.; Park, J. Y. Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top. Catal. 2008, 49, 126–135.

    Article  CAS  Google Scholar 

  269. Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem., Int. Ed. 2012, 51, 5629–5633.

    Article  CAS  Google Scholar 

  270. Deka, S.; Quarta, A.; Lupo, M. G.; Falqui, A.; Boninelli, S.; Giannini, C.; Morello, G.; De Giorgi, M.; Lanzani, G.; Spinella, C. et al. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J. Am. Chem. Soc. 2009, 131, 2948–2958.

    Article  CAS  Google Scholar 

  271. Homan, K. A.; Souza, M.; Truby, R.; Luke, G. P.; Green, C.; Vreeland, E.; Emelianov, S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 2012, 6, 641–650.

    Article  CAS  Google Scholar 

  272. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

    Article  Google Scholar 

  273. Huang, C.; Sun, Z. B.; Cui, H. D.; Pan, T.; Geng, S. Y.; Zhou, W. H.; Chu, P. K.; Yu, X. F. InSe nanosheets for efficient NIR-II-responsive drug release. ACS Appl. Mater. Interfaces 2019, 11, 27521–27528.

    Article  CAS  Google Scholar 

  274. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  Google Scholar 

  275. Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

    Article  CAS  Google Scholar 

  276. Mokari, T.; Banin, U. Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 2003, 15, 3955–3960.

    Article  Google Scholar 

  277. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

    Article  CAS  Google Scholar 

  278. Ghezelbash, A.; Koo, B.; Korgel, B. A. Self-assembled stripe patterns of CdS nanorods. Nano Lett. 2006, 6, 1832–1836.

    Article  CAS  Google Scholar 

  279. Pietra, F.; van Dijk-Moes, R. J. A.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C.; Vanmaekelbergh, D. Synthesis of highly luminescent silica-coated CdSe/CdS nanorods. Chem. Mater. 2013, 25, 3427–3434.

    Article  CAS  Google Scholar 

  280. Bertrand, G. H. V.; Polovitsyn, A.; Christodoulou, S.; Khan, A. H.; Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 2016, 52, 11975–11978.

    Article  CAS  Google Scholar 

  281. Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z. Y.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I. Tunable and efficient red to near-infrared photoluminescence by synergistic exploitation of core and surface silver doping of CdSe nanoplatelets. Chem. Mater. 2019, 31, 1450–1459.

    Article  CAS  Google Scholar 

  282. Yadav, S.; Singh, A.; Thulasidharan, L.; Sapra, S. Surface decides the photoluminescence of colloidal CdSe nanoplatelets based core/shell heterostructures. J. Phys. Chem. C 2018, 122, 820–829.

    Article  CAS  Google Scholar 

  283. Taghipour, N.; Hernandez Martinez, P. L.; Ozden, A.; Olutas, M.; Dede, D.; Gungor, K.; Erdem, O.; Perkgoz, N. K.; Demir, H. V. Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/CdS nanoplatelets to a monolayer of MoS2. ACS Nano 2018, 12, 8547–8554.

    Article  CAS  Google Scholar 

  284. Jiang, Y.; Ojo, W. S.; Mahler, B.; Xu, X. Z.; Abécassis, B.; Dubertret, B. Synthesis of CdSe nanoplatelets without short-chain ligands: Implication for their growth mechanisms. ACS Omega 2018, 3, 6199–6205.

    Article  CAS  Google Scholar 

  285. Polovitsyn, A.; Dang, Z. Y.; Movilla, J. L.; Martín-García, B.; Khan, A. H.; Bertrand, G. H. V.; Brescia, R.; Moreels, I. Synthesis of air-stable CdSe/ZnS core-shell nanoplatelets with tunable emission wavelength. Chem. Mater. 2017, 29, 5671–5680.

    Article  CAS  Google Scholar 

  286. Antanovich, A.; Prudnikau, A.; Matsukovich, A.; Achtstein, A.; Artemyev, M. Self-assembly of CdSe nanoplatelets into stacks of controlled size induced by ligand exchange. J. Phys. Chem. C 2016, 120, 5764–5775.

    Article  CAS  Google Scholar 

  287. Rowland, C. E.; Fedin, I.; Zhang, H.; Gray, S. K.; Govorov, A. O.; Talapin, D. V.; Schaller, R. D. Picosecond energy transfer and multiexciton transfer outpaces auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 2015, 14, 484–489.

    Article  CAS  Google Scholar 

  288. Naskar, S.; Schlosser, A.; Miethe, J. F.; Steinbach, F.; Feldhoff, A.; Bigall, N. C. Site-selective noble metal growth on CdSe nanoplatelets. Chem. Mater. 2015, 27, 3159–3166.

    Article  CAS  Google Scholar 

  289. Jana, S.; Phan, T. N. T.; Bouet, C.; Tessier, M. D.; Davidson, P.; Dubertret, B.; Abécassis, B. Stacking and colloidal stability of CdSe nanoplatelets. Langmuir 2015, 37, 10532–10539.

    Article  Google Scholar 

  290. Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

    Article  CAS  Google Scholar 

  291. Lim, S. J.; Kim, W.; Shin, S. K. Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. J. Am. Chem. Soc. 2012, 134, 7576–7579.

    Article  CAS  Google Scholar 

  292. Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

    Article  CAS  Google Scholar 

  293. Scott, R.; Kickhöfel, S.; Schoeps, O.; Antanovich, A.; Prudnikau, A.; Chuvilin, A.; Woggon, U.; Artemyev, M.; Achtstein, A. W. Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type ii hetero nanoplatelets. Phys. Chem. Chem. Phys. 2016, 18, 3197–3203.

    Article  CAS  Google Scholar 

  294. Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

    Article  CAS  Google Scholar 

  295. Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

    Article  CAS  Google Scholar 

  296. Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795–1800.

    Article  CAS  Google Scholar 

  297. Antu, A. D. Morphology and surface passivation of colloidal PbS nanoribbons. Master Degree Thesis, Bowling Green State University, Bowling Green, OH, USA, 2017.

    Google Scholar 

  298. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  CAS  Google Scholar 

  299. Ji, B. T.; Panfil, Y. E.; Banin, U. Heavy-metal-free fluorescent ZnTe/ZnSe nanodumbbells. ACS Nano 2017, 11, 7312–7320.

    Article  CAS  Google Scholar 

  300. Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

    Article  CAS  Google Scholar 

  301. Pedetti, S.; Nadal, B.; Lhuillier, E.; Mahler, B.; Bouet, C.; Abécassis, B.; Xu, X. Z.; Dubertret, B. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mater. 2013, 25, 2455–2462.

    Article  CAS  Google Scholar 

  302. VanOrman, Z. A.; Conti III, C. R.; Strouse, G. F.; Nienhaus, L. Red-to-blue photon upconversion enabled by one-dimensional cdte nanorods. Chem. Mater. 2020, 33, 452–458.

    Article  Google Scholar 

  303. Izquierdo, E.; Robin, A.; Keuleyan, S.; Lequeux, N.; Lhuillier, E.; Ithurria, S. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 2016, 138, 10496–10501.

    Article  CAS  Google Scholar 

  304. Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Synthesis and growth mechanism of lead sulfide quantum platelets in lamellar mesophase templates. Chem. Mater. 2014, 26, 5012–5019.

    Article  CAS  Google Scholar 

  305. Bielewicz, T.; Ramin Moayed, M. M.; Lebedeva, V.; Strelow, C.; Rieckmann, A.; Klinke, C. From dots to stripes to sheets: Shape control of lead sulfide nanostructures. Chem. Mater. 2015, 27, 8248–8254.

    Article  CAS  Google Scholar 

  306. Choi, J.; Jin, J.; Lee, J.; Park, J. H.; Kim, H. J.; Oh, D. H.; Ahn, J. R.; Son, S. U. Columnar assembly and successive heating of colloidal 2D nanomaterials on graphene as an efficient strategy for new anode materials in lithium ion batteries: The case of In2S3 nanoplates. J. Mater. Chem. 2012, 22, 11107–11112.

    Article  CAS  Google Scholar 

  307. Acharya, S.; Dutta, M.; Sarkar, S.; Basak, D.; Chakraborty, S.; Pradhan, N. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties. Chem. Mater. 2012, 24, 1779–1785.

    Article  CAS  Google Scholar 

  308. Ye, F. M.; Wang, C.; Du, G. H.; Chen, X. B.; Zhong, Y. J.; Jiang, J. Z. Large-scale synthesis of In2S3 nanosheets and their rechargeable lithium-ion battery. J. Mater. Chem. 2011, 21, 17063–17065.

    Article  CAS  Google Scholar 

  309. Park, K. H.; Jang, K.; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew. Chem. 2006, 118, 4724–4728.

    Article  Google Scholar 

  310. Cao, Y. C. Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457.

    Article  CAS  Google Scholar 

  311. Zhao, Y. S.; Yu, Y. L.; Gao, F. M. InP nanowires synthesized via solvothermal process with CTAB assisted. J. Cryst. Growth 2013, 371, 148–154.

    Article  CAS  Google Scholar 

  312. Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

    Article  CAS  Google Scholar 

  313. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Article  CAS  Google Scholar 

  314. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

    Article  CAS  Google Scholar 

  315. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

    Article  CAS  Google Scholar 

  316. Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

    Article  CAS  Google Scholar 

  317. Kramer, I. J.; Levina, L.; Debnath, R.; Zhitomirsky, D.; Sargent, E. H. Solar cells using quantum funnels. Nano Lett. 2011, 11, 3701–3706.

    Article  CAS  Google Scholar 

  318. Massadeh, S.; Xu, S.; Nann, T. Synthesis and exploitation of InP/ZnS quantum dots for bioimaging. In Proceedings of SPIE 7189, Colloidal Quantum Dots for Biomedical Applications IV, San Jose, California, United States, 2009, pp 718902.

  319. Soenen, S. J.; Manshian, B. B.; Aubert, T.; Himmelreich, U.; Demeester, J.; De Smedt, S. C.; Hens, Z.; Braeckmans, K. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Chem. Res. Toxicol. 2014, 27, 1050–1059.

    Article  CAS  Google Scholar 

  320. Chen, Y. C.; Fan, X. D. Biological lasers for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900377.

    Article  Google Scholar 

  321. Martino, N.; Kwok, S. J. J.; Liapis, A. C.; Forward, S.; Jang, H.; Kim, H. M.; Wu, S. J.; Wu, J. M.; Dannenberg, P. H.; Jang, S. J. et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics 2019, 13, 720–727.

    Article  CAS  Google Scholar 

  322. Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655.

    Article  CAS  Google Scholar 

  323. Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.

    Article  CAS  Google Scholar 

  324. Bang, E.; Choi, Y.; Cho, J.; Suh, Y. H.; Ban, H. W.; Son, J. S.; Park, J. Large-scale synthesis of highly luminescent InP@ZnS quantum dots using elemental phosphorus precursor. Chem. Mater. 2017, 29, 4236–4243.

    Article  CAS  Google Scholar 

  325. Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M. G.; Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem. 2018, 130, 11081–11084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Nizamoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, H.B., Sadeghi, S., Dogru Yuksel, I.B. et al. Past, present and future of indium phosphide quantum dots. Nano Res. 15, 4468–4489 (2022). https://doi.org/10.1007/s12274-021-4038-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4038-z

Keywords

Navigation