Skip to main content
Log in

Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal phosphides have shown great application potential as anode for sodium-ion batteries (NIBs) owing to high theoretical capacity, suitable operation voltage and abundant resource. Unfortunately, the application of NiP2 anode is severely impeded by low practical capacity and fast capacity decay due to the huge volume variation and low reactivity of internal phosphorus (P) component towards Na+. Herein, electronic structure modulation of NiP2 via heteroatoms doping and introducing vacancies defects to enhance Na+ adsorption sites and diffusion kinetics is successfully attempted. The as-synthesized three-dimensional (3D) bicontinuous carbon matrix decorated with well-dispersed fluorine (F)-doped NiP2 nanoparticles (F-NiP2@carbon nanosheets) delivers a high reversible capacity (585 mAh·g-1 at 0.1 A·g-1) and excellent long cycling stability (244 mAh·g-1 over 1,000 cycles at 2 A·g-1) when tested as anode in NIBs. Density functional theory (DFT) calculations reveal that F doping in NiP2 induces the formation of P vacancies with increased Na+ adsorption energy and accelerates the alloying of internal P component. The F-NiP2@carbon nanosheets//Na3V2(PO4)3 full cell is evaluated showing stable long cycling life. The heteroatoms doping-induced dual defects strategy opens up a new way of metal phosphides for sodium storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X. Q.; Li, D. L.; Huang, H. J.; Jiang, X.; Yang, Z. H.; Zhang W. X. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for highperformance Na-ion batteries. Nano Res. 2021, 14, 3531–3537.

    Article  CAS  Google Scholar 

  2. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  3. Xue, Y. C.; Guo, X. M.; Wu, M. R.; Chen, J. L.; Duan, M. T.; Shi, J.; Zhang, J. H.; Cao, F.; Liu, Y. J.; Kong, Q. H. Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res. 2021, 14, 3598–3607.

    Article  CAS  Google Scholar 

  4. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  CAS  Google Scholar 

  5. Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

    Article  CAS  Google Scholar 

  6. Miao, Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041–3047.

    Article  CAS  Google Scholar 

  7. Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation "Beyond Li-ion" batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

    Article  CAS  Google Scholar 

  8. Ma, G. Y.; Zhou, Y. L.; Wang, Y. Y.; Feng, Z. Y.; Yang, J. N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Res. 2021, 14, 3523–3530.

    Article  CAS  Google Scholar 

  9. Shi, S. S.; Sun, C. L.; Yin, X. P.; Shen, L. Y.; Shi, Q. H.; Zhao, K. N.; Zhao, Y. F.; Zhang, J. J. FeP quantum dots confined in carbonnanotube- grafted p-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv. Funct. Mater. 2020, 30, 1909283.

    Article  CAS  Google Scholar 

  10. Zhang, J.; Zhang, K.; Yang, J.; Lee, G. H.; Shin, J.; Lau, V. W. H.; Kang, Y. M. Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv. Energy Mater. 2018, 8, 1800283.

    Article  Google Scholar 

  11. Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

    Article  Google Scholar 

  12. Zhang, Y. J.; Wang, G. Y.; Wang, L.; Tang, L.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. H. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries. Nano. Lett. 2019, 19, 2575–2582.

    Article  CAS  Google Scholar 

  13. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    Article  CAS  Google Scholar 

  14. Liu, Z. L.; Wang, X. X.; Wu, Z. Y.; Yang, S. J.; Yang, S. L.; Chen, S. P.; Wu, X. T.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Res. 2020, 13, 3157–3164.

    Article  CAS  Google Scholar 

  15. Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nanos. 2017, 11, 3705–3715.

    Article  CAS  Google Scholar 

  16. Owens-Baird, B.; Xu, J. Y.; Petrovykh, D. Y.; Bondarchuk, O.; Ziouani, Y.; González-Ballesteros, N.; Yox, P.; Sapountzi, F. M.; Niemantsverdriet, H.; Kolen'ko, Y. V. et al. NiP2: A story of two divergent polymorphic multifunctional materials. Chem. Mater. 2019, 31, 3407–3418.

    Article  CAS  Google Scholar 

  17. Zhao, Z. X.; Li, H. J.; Yang, Z. W.; Hao, S. Y.; Wang, X. M.; Wu, Y. C. Hierarchical Ni2P nanosheets anchored on three-dimensional graphene as self-supported anode materials towards long-life sodiumion batteries. J. Alloys Compd. 2020, 817, 152751.

    Article  CAS  Google Scholar 

  18. Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@Carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.

    Article  Google Scholar 

  19. Xu, K.; Sun, Y. Q.; Li, X. L.; Zhao, Z. H.; Zhang, Y. Q.; Li, C. C.; Fan, H. J. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity. ACS Materials Lett. 2020, 2, 736–743.

    Article  CAS  Google Scholar 

  20. Chen, J.; Wei, H. M.; Chen, H. J.; Yao, W. H.; Lin, H. L.; Han, S. N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim. Acta 2018, 271, 49–57.

    Article  Google Scholar 

  21. Liu, T.; Li, A. R.; Wang, C. B.; Zhou, W.; Liu, S. J.; Guo, L. Interfacial electron transfer of Ni2P-NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 2018, 30, 1803590.

    Article  Google Scholar 

  22. Li, G. H.; Yang, H.; Li, F. C.; Du, J.; Shi, W.; Cheng, P. Facile formation of a nanostructured NiP2@C material for advanced lithiumion battery anode using adsorption property of metal-organic framework. J. Mater. Chem. A 2016, 4, 9593–9599.

    Article  CAS  Google Scholar 

  23. Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.

    Article  CAS  Google Scholar 

  24. Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

    Article  Google Scholar 

  25. Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

    Article  CAS  Google Scholar 

  26. Zhang, W. L.; Yin, J.; Sun, M. L.; Wang, W. X.; Chen, C. L.; Altunkaya, M.; Emwas, A. H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H. N. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 2020, 32, 2000732.

    Article  CAS  Google Scholar 

  27. Guo, Q.; Deng, W.; Xia, S. J.; Zhang, Z. B.; Zhao, F.; Hu, B. J.; Zhang, S. S.; Zhou, X. F.; Chen, G. Z.; Liu, Z. P. Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Res. 2021, 14, 3585–3597.

    Article  CAS  Google Scholar 

  28. W u, X.; Zhao, W.; Wang, H.; Qi, X. J.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 2018, 378, 460–467.

    Article  Google Scholar 

  29. Liu, H.; Liu, Z.; Feng, L. G. Bonding state synergy of the NiF2/Ni2P hybrid with the co-existence of covalent and ionic bonds and the application of this hybrid as a robust catalyst for the energy-relevant electrooxidation of water and urea. Nanoscale 2019, 11, 16017–16025.

    Article  CAS  Google Scholar 

  30. Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.

    Article  CAS  Google Scholar 

  31. Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of PO and P-C bonds in hard carbon for high-capacity and long-life Li/Kion batteries. Adv. Energy Mater. 2019, 9, 1901676.

    Article  Google Scholar 

  32. Duan, J. J.; Chen, S.; Ortíz-Ledón, C. A.; Jaroniec, M.; Qiao, S. Z. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem., Int. Ed. 2020, 59, 8181–8186.

    Article  CAS  Google Scholar 

  33. Ran, Z. Q.; Shu, C. Z.; Hou, Z. Q.; Hei, P.; Yang, T. S.; Liang, R. X.; Li, J. B.; Long, J. P. Phosphorus vacancies enriched Ni2P nanosheets as efficient electrocatalyst for high-performance Li-O2 batteries. Electrochim. Acta 2020, 337, 135795.

    Article  CAS  Google Scholar 

  34. Zhang, Q.; Zhang, W. B.; Ma, X. J.; Zhang, L.; Bao, X.; Guo, Y. W.; Long, J. P. Boosting pseudocapacitive energy storage performance via both phosphorus vacancy defect and charge injection technique over the CoP electrode. J. Alloys Compd. 2021, 864, 158106.

    Article  CAS  Google Scholar 

  35. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    Article  CAS  Google Scholar 

  36. Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

    Article  CAS  Google Scholar 

  37. Sun, Y.; Shi, P. C.; Xiang, H. F.; Liang, X.; Yu, Y. High-safety nonaqueous electrolytes and interphases for sodium-ion batteries. Small 2019, 15, 1805479.

    Article  Google Scholar 

  38. Li, H. J.; Hao, S. Y.; Tian, Z.; Zhao, Z. X.; Wang, X. M. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage. Electrochim. Acta 2019, 321, 134624.

    Article  Google Scholar 

  39. Chen, S. Q.; Wu, F. X.; Shen, L. F.; Huang, Y. Y.; Sinha, S. K.; Srot, V.; van Aken, P. A.; Maier, J.; Yu, Y. Cross-linking hollow carbon sheet encapsulated CuP2 nanocomposites for high energy density sodium-ion batteries. ACS Nano 2018, 12, 7018–7027.

    Article  Google Scholar 

  40. Duan, J.; Deng, S. Y.; Wu, W. Y.; Li, X.; Fu, H. Y.; Huang, Y. H.; Luo, W. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage. ACS Appl. Mater. Interfaces 2019, 11, 12415–12420.

    Article  CAS  Google Scholar 

  41. Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

    Article  CAS  Google Scholar 

  42. Zhao, W. X.; Ma, X. Q.; Wang, G. Z.; Long, X. J.; Li, Y. D.; Zhang, W. L.; Zhang, P. Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries. Appl. Surf. Sci. 2018, 445, 167–174.

    Article  Google Scholar 

  43. Zhang, W.; Liu, D. W. Nitrogen-treated hierarchical macro-/mesoporous TiO2 used as anode materials for lithium ion batteries with high performance at elevated temperatures. Electrochim. Acta 2015, 156, 53–59.

    Article  Google Scholar 

  44. Shen, L. F.; Zhang, X. G.; Uchaker, E.; Yuan, C. Z.; Cao, G. Z. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698.

    Article  CAS  Google Scholar 

  45. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  46. Gao, S. J.; Shi, Z.; Zhang, W. B.; Zhang, F.; Jin, J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014, 8, 6344–6352.

    Article  CAS  Google Scholar 

  47. Tai, Z. X.; Zhang, Q.; Liu, Y. J.; Liu, H. K.; Dou, S. X. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54–61.

    Article  CAS  Google Scholar 

  48. Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3992–3996.

    Article  Google Scholar 

  49. Jiang, Y.; Zhou, X. F.; Li, D. J.; Cheng, X. L.; Liu, F. F.; Yu, Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 2018, 8, 1800068.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005201 and 22005292), the Natural Science Foundation of Guangdong (No. 2020A1515010840) and Shenzhen Government’s Plan of Science and Technology (Nos. JCYJ20200109105803806 and RCYX20200714114535052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yu or Chuanxin He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, L., Cheng, X. et al. Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance. Nano Res. 15, 2147–2156 (2022). https://doi.org/10.1007/s12274-021-3852-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3852-7

Keywords

Navigation