Skip to main content
Log in

Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured metal phosphides are very attractive materials in energy storage and conversion, but their applications are severely limited by complicated preparation steps, harsh conditions and large excess of highly toxic phosphorus source. Here we develop a highly efficient one-step method to synthesize Sn4P3 nanostructure based on simultaneous reduction of SnCl4 and PCl3 on mechanically activated Na surface and in situ phosphorization. The low-toxic PCl3 displays a very high phosphorizing efficiency (100%). Furthermore, this simple method is powerful to control phosphide size. Ultrafine Sn4P3 nanocrystals (< 5 nm) supported on carbon sheets (Sn4P3/C) are obtained, which is due to the unique bottom-up surface-limited reaction. As the anode material for sodium/lithium ion batteries (SIBs/LIBs), the Sn4P3/C shows profound sodiation/lithiation extents, good phase-conversion reversibility, excellent rate performance and long cycling stability, retaining high capacities of 420 mAh/g for SIBs and 760 mAh/g for LIBs even after 400 cycles at 1.0 A/g. Combining simple and efficient preparation, low-toxic and high-efficiency phosphorus source and good control of nanosize, this method is very promising for low-cost and scalable preparation of high-performance Sn4P3 anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, H. N.; Chen, C. C.; Chen, K.; Cai, H. C.; Chang, X. Y.; Liu, S.; Li, W. Q.; Wang, Y. J.; Wang, C. Y. High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. J. Mater. Chem. A 2017, 5, 22316–22324.

    CAS  Google Scholar 

  2. Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.

    CAS  Google Scholar 

  3. Park, G. D.; Lee, J. K.; Kang, Y. C. Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 2020, 389, 124350.

    CAS  Google Scholar 

  4. Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Cheng, F. Y.; Weiss, P. S.; Chen, J. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539–8547.

    CAS  Google Scholar 

  5. Wu, F. X.; Zhao, C. L.; Chen, S. Q.; Lu, Y. X.; Hou, Y. L.; Hu, Y. S.; Maier, J.; Yu, Y. Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960–973.

    CAS  Google Scholar 

  6. Xu, X. J.; Liu, J.; Liu, Z. B.; Wang, Z. S.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance li-ion batteries. Small 2018, 14, 1800793.

    Google Scholar 

  7. Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Xiang, J. Y.; Mai, Y. J.; Zhang, J.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D.; Mao, S. X. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Adv. Funct. Mater. 2012, 22, 3927–3935.

    CAS  Google Scholar 

  8. Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

    CAS  Google Scholar 

  9. Ding, Y. J.; Li, Z. F.; Timofeeva, E. V.; Segre, C. U. In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for li-ion batteries. Adv. Energy Mater. 2018, 8, 1702134.

    Google Scholar 

  10. Liu, Q.; Ye, J. J.; Chen, Z. H.; Hao, Q.; Xu, C. X.; Hou, J. G. Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. J. Colloid Interface Sci. 2019, 537, 588–596.

    CAS  Google Scholar 

  11. Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860–1866.

    CAS  Google Scholar 

  12. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

    CAS  Google Scholar 

  13. Fan, X. L.; Gao, T.; Luo, C.; Wang, F.; Hu, J. K.; Wang, C. S. Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy 2017, 38, 350–357.

    CAS  Google Scholar 

  14. Xu, X. J.; Liu, J.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Self-supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long-life lithium-ion batteries. Chem.-Eur. J. 2017, 23, 5198–5204.

    CAS  Google Scholar 

  15. Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.

    Google Scholar 

  16. Li, J. J.; Shi, L.; Gao, J. Y.; Zhang, G. Q. General one-pot synthesis of transition-metal phosphide/nitrogen-doped carbon hybrid nanosheets as ultrastable anodes for sodium-ion batteries. Chem.-Eur. J. 2018, 24, 1253–1258.

    CAS  Google Scholar 

  17. Honjo, M.; Marumoto, R. Production of ribonucleoside 5’-phosphate. U.S. Patent 3,346,562, Oct 10, 1967.

    Google Scholar 

  18. Karkozova, G. F.; Lyubetskii, S. G.; Zyuzina, L. I.; Gol’denberg, A. L.; Sirota, A. G. Phosphonation and surface coloring of polyolefins. Plast. Massy 1970, 33–36.

    Google Scholar 

  19. Kobayashi, J.; Ishikawa, A.; Ishino, Y.; Ono, T.; Ito, T.; Mihara, M. Preparation of 10-halo-10H-9-oxa-10-phosphaphenanthrenes from 2-phenylphenols. J. P. Patent 2007223934A, Sep 6, 2007.

    Google Scholar 

  20. Zhang, J. L.; Wang, W. H.; Li, B. H. Effect of particle size on the sodium storage performance of Sn4P3. J. Alloys Compd. 2019, 771, 204–208.

    CAS  Google Scholar 

  21. Li, W. J.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Sn4+xP3 amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long Life, and superior rate capability. Adv. Mater. 2014, 26, 4037–4042.

    CAS  Google Scholar 

  22. Lu, Y. Y.; Zhou, P. F.; Lei, K. X.; Zhao, Q.; Tao, Z. L.; Chen, J. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601973.

    Google Scholar 

  23. Park, G. D.; Yang, S. J.; Lee, J. H.; Kang, Y. C. Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions. Small 2019, 15, 1905289.

    CAS  Google Scholar 

  24. Li, G. L.; Wu, X. Q.; Guo, H.; Guo, Y. R.; Chen, H.; Wu, Y.; Zheng, J.; Li, X. G. Plasma transforming Ni(OH)2 nanosheets into porous nickel nitride sheets for alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 5951–5957.

    CAS  Google Scholar 

  25. Liu, Z. L.; Yang, S. J.; Sun, B. X.; Chang, X. H.; Zheng, J.; Li, X. G. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 10187–10191.

    CAS  Google Scholar 

  26. Deng, Q. L.; Chen, F.; Liu, S.; Bayaguud, A.; Feng, Y. Z.; Zhang, Z. B.; Fu, Y. P.; Yu, Y.; Zhu, C. B. Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 2020, 30, 1908665.

    CAS  Google Scholar 

  27. Guo, Q.; Ru, Q.; Liu, Y.; Yan, H. L.; Wang, B.; Hou, X. H. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem 2018, 5, 2150–2156.

    CAS  Google Scholar 

  28. Li, B.; Xue, H. G.; Pang, H.; Xu, Q. Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. Sci. China Chem. 2020, 63, 475–482.

    CAS  Google Scholar 

  29. Jiang, Y. Q.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Noninterference revealing of l“layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn.Mn batteries with superior performance. Adv. Sci. 2020, 7, 1902795.

    CAS  Google Scholar 

  30. Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-Ion batteries. Nano Lett. 2014, 14, 1865–1869.

    CAS  Google Scholar 

  31. Lan, D. N.; Wang, W. H.; Shi, L.; Huang, Y.; Hu, L. B.; Li, Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries. J. Mater. Chem. A 2017, 5, 5791–5796.

    CAS  Google Scholar 

  32. Gomez-Camer, J. L.; Acebedo, B.; Ortiz-Vitoriano, N.; Monterrubio, I.; Galceran, M.; Rojo, T. Unravelling the impact of electrolyte nature on Sn4P3/C negative electrodes for Na-ion batteries. J. Mater. Chem. A 2019, 7, 18434–18441.

    CAS  Google Scholar 

  33. Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.

    CAS  Google Scholar 

  34. Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

    CAS  Google Scholar 

  35. Liu, Z. L.; Yang, S. L.; Sun, B. X.; Yang, P. P.; Zheng, J.; Li, X. G. Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew. Chem., Int. Ed. 2020, 59, 1975–1979.

    CAS  Google Scholar 

  36. Kim, Y. J.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-Ion batteries. Adv. Mater. 2014, 26, 4139–4144.

    CAS  Google Scholar 

  37. Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.

    Google Scholar 

  38. Zhang, K.; Park, M.; Zhang, J.; Lee, G. H.; Shin, J.; Kang, Y. M. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 2017, 10, 4337–4350.

    CAS  Google Scholar 

  39. Ma, C. R.; Fu, Z. G.; Deng, C. J.; Liao, X. Z.; He, Y. S.; Ma, Z. F.; Xiong, H. Carbon-coated FeP nanoparticles anchored on carbon nanotube networks as an anode for long-life sodium-ion storage. Chem. Commun. 2018, 54, 11348–11351.

    CAS  Google Scholar 

  40. Pan, E. Z.; Jin, Y. H.; Zhao, C. C.; Jia, M.; Chang, Q. Q.; Jia, M. Q.; Wang, L.; He, X. M. Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl. Energy Mater. 2019, 2, 1756–1764.

    CAS  Google Scholar 

  41. Choi, J.; Kim, W. S.; Kim, K. H.; Hong, S. H. Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J. Mater. Chem. A 2018, 6, 17437–17443.

    CAS  Google Scholar 

  42. Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151, A933–A937.

    CAS  Google Scholar 

  43. Mao, O.; Dunlap, R. A.; Dahn, J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: I. The Sn2Fe-C system. J. Electrochem. Soc. 1999, 146, 405–413.

    CAS  Google Scholar 

  44. Yoon, S.; Lee, J.-M.; Kim, H.; Im, D.; Doo, S.-G.; Sohn, H.-J. An Sn-Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries. Electrochim. Acta 2009, 54, 2699–2705.

    CAS  Google Scholar 

  45. Zhang, Z. Y.; Hu, T. S.; Sun, Q. M.; Chen, Y.; Yang, Q. X.; Li, Y. M. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power Sources 2020, 453, 227908.

    CAS  Google Scholar 

  46. Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

    CAS  Google Scholar 

  47. Feng, X. Y.; Tang, M. X.; O’Neill, S.; Hu, Y. Y. In situ synthesis and in operando NMR studies of a high-performance Ni5P4-nanosheet anode. J. Mater. Chem. A 2018, 6, 22240–22247.

    CAS  Google Scholar 

  48. Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

    Google Scholar 

  49. Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

    Google Scholar 

  50. Jiang, Y.; Wang, Y. Y.; Jiang, J. L.; Liu, S.; Li, W. R.; Huang, S. S.; Chen, Z. W.; Zhao, B. In-situ solvothermal phosphorization from nano-sized tetragonal-Sn to rhombohedral-Sn4P3 embedded in hollow graphene sphere with high capacity and stability. Electrochim. Acta 2019, 312, 263–271.

    CAS  Google Scholar 

  51. Zhang, M.; Wang, H. J.; Feng, J.; Chai, Y. Q.; Luo, X. L.; Yuan, R.; Yang, X. Controllable synthesis of 3D nitrogen-doped carbon networks supported SnxPy nanoparticles as high performance anode for lithium ion batteries. Appl. Surf. Sci. 2019, 484, 899–905.

    CAS  Google Scholar 

  52. Zhu, K. J.; Liu, J.; Li, S. T.; Liu, L. L.; Yang, L. Y.; Liu, S. L.; Wang, H.; Xie, T. Ultrafine cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for Lithium Ion Batteries. Adv. Mater. Interfaces 2017, 4, 1700377.

    Google Scholar 

  53. Chang, X. H.; Sun, B. X.; Xie, Z. W.; Wang, Z. Y.; Zheng, J.; Li, X. G. Structure robustness and Li+ diffusion kinetics in amorphous and graphitized carbon based Sn/C composites for lithium-ion batteries. J. Electroanal. Chem. 2019, 854, 113529.

    CAS  Google Scholar 

  54. Zhang, B. P.; Xia, G. L.; Chen, W.; Gu, Q. F.; Sun, D. L.; Yu, X. B. Controlled-size hollow magnesium sulfide nanocrystals anchored on graphene for advanced lithium storage. ACS Nano 2018, 12, 12741–12750.

    CAS  Google Scholar 

  55. Lu, Y.; Lu, Y. Y.; Niu, Z. Q.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469.

    Google Scholar 

  56. Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodiumion storage. Adv. Energy Mater. 2020, 10, 2000741.

    CAS  Google Scholar 

  57. Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

    CAS  Google Scholar 

  58. Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213–220.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51972075 and 51772059), the Natural Science Foundation of Heilongjiang Province (No. ZD2019E004) and the Fundamental Research funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piaoping Yang, Jie Zheng or Xingguo Li.

Electronic Supplementary Material

12274_2020_2987_MOESM1_ESM.pdf

Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, X., Wu, Z. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Res. 13, 3157–3164 (2020). https://doi.org/10.1007/s12274-020-2987-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2987-2

Keywords

Navigation