Skip to main content
Log in

Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interfacial solar steam generation (ISSG) system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption. Aiming at optimizing the desalination properties, materials and system design have been the current research focus. Recently, many novel bio-derived/bio-inspired design strategies were proposed owing to their highly efficient structures inherited from nature, which were fine-tuned over eons of evolution, as well as their low cost and ease of treatment. In this review, we are going to systematically report recent progress of various bio-derived/bio-inspired strategies in terms of optical design, wetting, thermal management, and overall system design, presenting an overview of the current challenges of bio-inspired materials in ISSG system and other application fields. This article is intended to provide a comprehensive review of recent developments about bio-derived/bio-inspired materials in ISSG system and conclude with suggestions regarding further research directions for performance enhancement through design of bio-derived/bio-inspired materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348.

    Article  CAS  Google Scholar 

  2. Gude, V. G.; Nirmalakhandan, N.; Deng, S. G. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654.

    Article  CAS  Google Scholar 

  3. Kalista, B.; Shin, H.; Cho, J.; Jang, A. Current development and future prospect review of freeze desalination. Desalination. 2018, 447, 167–181.

    Article  CAS  Google Scholar 

  4. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science. 2011, 333, 712–717.

    Article  CAS  Google Scholar 

  5. Qin, M. H.; Deshmukh, A.; Epsztein, R.; Patel, S. K.; Owoseni, O. M.; Walker, W. S.; Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination. 2019, 455, 100–114.

    Article  CAS  Google Scholar 

  6. Fujioka, R.; Wang, L. P.; Dodbiba, G.; Fujita, T. Application of progressive freeze-concentration for desalination. Desalination. 2013, 319, 33–37.

    Article  CAS  Google Scholar 

  7. Oren, Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review). Desalination. 2008, 228, 10–29.

    Article  CAS  Google Scholar 

  8. Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442.

    Article  CAS  Google Scholar 

  9. Ishii, S.; Sugavaneshwar, R. P.; Chen, K.; Dao, T. D.; Nagao, T. Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express. 2016, 6, 640–648.

    Article  CAS  Google Scholar 

  10. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015, 348, 1234–1237.

    Article  CAS  Google Scholar 

  11. Mahian, O.; Kianifar, A.; Kalogirou, S. A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594.

    Article  CAS  Google Scholar 

  12. Park, N. G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today. 2015, 18, 65–72.

    Article  CAS  Google Scholar 

  13. Wang, X. Z.; He, Y. R.; Cheng, G.; Shi, L.; Liu, X.; Zhu, J. Q. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conver. Manag. 2016, 130, 176–183.

    Article  CAS  Google Scholar 

  14. Liu, Z. P.; Yang, Z. J.; Huang, X. C.; Xuan, C. Y.; Xie, J. H.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Zhou, X. C.; Liu, Y. Z. Highabsorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A. 2017, 5, 20044–20052.

    Article  CAS  Google Scholar 

  15. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    Article  CAS  Google Scholar 

  16. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy. 2018, 3, 1031–1041.

    Article  Google Scholar 

  17. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Article  Google Scholar 

  18. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

    Article  Google Scholar 

  19. Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

    Article  Google Scholar 

  20. Fang, J.; Liu, Q. L.; Zhang, W.; Gu, J. J.; Su, Y. S.; Su, H. L.; Guo, C. P.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A. 2017, 5, 17817–17821.

    Article  CAS  Google Scholar 

  21. Liu, F. H.; Zhao, B. Y.; Wu, W. P.; Yang, H. Y.; Ning, Y. S.; Lai, Y. J.; Bradley, R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Adv. Funct. Mater. 2018, 28, 1803266.

    Article  Google Scholar 

  22. Yang, L.; Chen, G. L.; Zhang, N.; Xu, Y. X.; Xu, X. F. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustainable Chem. Eng. 2019, 7, 19311–19320.

    Article  CAS  Google Scholar 

  23. Wu, L. Y.; Ren, W. T.; Song, Y. Q.; Xin, M. J.; Niu, S. C.; Han, Z. W. High light absorption properties and optical structures in butterfly Heliophorus ila Lvcaenidae wing scales. RSC Adv. 2015, 5, 46011–46016.

    Article  CAS  Google Scholar 

  24. Wang, T. C.; Kong, S.; Jia, Y.; Chang, L. J.; Wong, C.; Xiong, D. S. Synthesis and thermal conductivities of the biomorphic Al2O3 fibers derived from silk template. Int. J. Appl. Ceram. Technol. 2013, 10, 285–292.

    Article  CAS  Google Scholar 

  25. Kokalj, T.; Cho, H.; Jenko, M.; Lee, L. P. Biologically inspired porous cooling membrane using arrayed-droplets evaporation. Appl. Phys. Lett. 2010, 96, 163703.

    Article  Google Scholar 

  26. Shi, N. N.; Tsai, C. C.; Camino, F.; Bernard, G. D.; Yu, N. F.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science. 2015, 349, 298–301.

    Article  CAS  Google Scholar 

  27. Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579–1584.

    Article  CAS  Google Scholar 

  28. Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

    Article  CAS  Google Scholar 

  29. Wang, P. W.; Zhao, T. Y.; Bian, R. X.; Wang, G. Y.; Liu, H. Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano. 2017, 11, 12385–12391.

    Article  CAS  Google Scholar 

  30. Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.

    Article  CAS  Google Scholar 

  31. Liu, H.; Chen, C. J.; Chen, G.; Kuang, Y. D.; Zhao, X. P.; Song, J. W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H. et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 8, 1701616.

    Article  Google Scholar 

  32. Luo, X.; Huang, C. L.; Liu, S.; Zhong, J. X. High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. Int. J. Energy Res. 2018, 42, 4830–4839.

    Article  Google Scholar 

  33. Fang, J.; Liu, J.; Gu, J. J.; Liu, Q. L.; Zhang, W.; Su, H. L.; Zhang, D. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chem. Mater. 2018, 30, 6217–6221.

    Article  CAS  Google Scholar 

  34. Zhu, M. M.; Yu, J. L.; Ma, C. L.; Zhang, C. Y.; Wu, D. X.; Zhu, H. T. Carbonized daikon for high efficient solar steam generation. Sol. Energy Mater. Sol. Cells. 2019, 191, 83–90.

    Article  CAS  Google Scholar 

  35. Wu, X.; Wu, L. M.; Tan, J.; Chen, G. Y.; Owens, G.; Xu, H. L. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. J. Mater. Chem. A. 2018, 6, 12267–12274.

    Article  CAS  Google Scholar 

  36. Elsheikh, A. H.; Sharshir, S. W.; Ali, M. K. A.; Shaibo, J.; Edreis, E. M. A.; Abdelhamid, T.; Du, C.; Zhang, H. O. Thin film technology for solar steam generation: A new dawn. Sol. Energy. 2019, 177, 561–575.

    Article  CAS  Google Scholar 

  37. Wu, X.; Chen, G. Y.; Owens, G.; Chu, D. W.; Xu, H. L. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy. 2019, 12, 277–296.

    Article  Google Scholar 

  38. Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Direct solar steam generation system for clean water production. Energy Storage Mater. 2019, 18, 429–446.

    Article  Google Scholar 

  39. Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule. 2019, 3, 683–718.

    Article  CAS  Google Scholar 

  40. Xie, Z. J.; Peng, Y. P.; Yu, L.; Xing, C. Y.; Qiu, M.; Hu, J. Q.; Zhang, H. Solar-Inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL. 2020, 4, 1900400.

    Article  Google Scholar 

  41. Liu, G. H.; Chen, T.; Xu, J. L.; Li, G.; Wang, K. Y. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A. 2020, 8, 513–531.

    Article  CAS  Google Scholar 

  42. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy. 2019, 57, 507–518.

    Article  CAS  Google Scholar 

  43. Li, J. L.; Du, M. H.; Lv, G. X.; Zhou, L.; Li, X. Q.; Bertoluzzi, L.; Liu, C. H.; Zhu, S. N.; Zhu, J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 2018, 30, 1805159.

    Article  Google Scholar 

  44. Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-Inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small. 2014, 10, 3234–3239.

    Article  CAS  Google Scholar 

  45. Li, Z. T.; Wang, C. B.; Lei, T.; Ma, H. L.; Su, J. B.; Ling, S.; Wang, W. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity. Adv. Sustain. Syst. 2019, 3, 1800144.

    Article  Google Scholar 

  46. Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. X.; Li, J. L.; Zhu, S. N.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77.

    Article  CAS  Google Scholar 

  47. Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

    Article  Google Scholar 

  48. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  49. Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 2009, 9, 1139–1146.

    Article  CAS  Google Scholar 

  50. Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale. 2018, 10, 6186–6193.

    Article  CAS  Google Scholar 

  51. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 2016, 10, 393–398.

    Article  CAS  Google Scholar 

  52. Chang, C.; Yang, C.; Liu, Y. M.; Tao, P.; Song, C. Y.; Shang, W.; Wu, J. B.; Deng, T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl. Mater. Interfaces. 2016, 8, 23412–23418.

    Article  CAS  Google Scholar 

  53. Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces. 2020, 12, 32880–32887.

    Article  CAS  Google Scholar 

  54. Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy. 2017, 41, 600–608.

    Article  CAS  Google Scholar 

  55. Lu, Q. C.; Yang, Y.; Feng, J. R.; Wang, X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Sol. RRL. 2019, 3, 1800277.

    Article  Google Scholar 

  56. Irshad, M. S.; Wang, X. B.; Abbasi, M. S.; Arshad, N.; Chen, Z. H.; Guo, Z. Z.; Yu, L.; Qian, J. W.; You, J.; Mei, T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustainable Chem. Eng. 2021, 9, 3887–3900.

    Article  CAS  Google Scholar 

  57. Li, B.; Wang, Q.; Zou, R. J.; Liu, X. J.; Xu, K. B.; Li, W. Y.; Hu, J. Q. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale. 2014, 6, 3274–3282.

    Article  CAS  Google Scholar 

  58. Song, C. Q.; Li, T. C.; Guo, W.; Gao, Y.; Yang, C. Y.; Zhang, Q.; An, D.; Huang, W. C.; Yan, M.; Guo, C. S. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New J. Chem. 2018, 42, 3175–3179.

    Article  CAS  Google Scholar 

  59. Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces. 2017, 9, 7675–7681.

    Article  CAS  Google Scholar 

  60. Dongare, P. D.; Alabastri, A.; Pedersen, S.; Zodrow, K. R.; Hogan, N. J.; Neumann, O.; Wu, J. J.; Wang, T. X.; Deshmukh, A.; Elimelech, M. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA. 2017, 114, 6936–6941.

    Article  CAS  Google Scholar 

  61. Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

    Article  Google Scholar 

  62. Liu, Z. J.; Song, H. M.; Ji, D. X.; Li, C. Y.; Cheney, A.; Liu, Y. H.; Zhang, N.; Zeng, X.; Chen, B. R.; Gao, J. et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob. Chall. 2017, 7, 1600003.

    Article  Google Scholar 

  63. Liu, Y. M.; Chen, J. W.; Guo, D. W.; Cao, M. Y.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl. Mater. Interfaces. 2015, 7, 13645–13652.

    Article  CAS  Google Scholar 

  64. Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 2016, 4, 1223–1230.

    Article  CAS  Google Scholar 

  65. Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano. 2017, 11, 5087–5093.

    Article  CAS  Google Scholar 

  66. Fu, Y.; Wang, G.; Ming, X.; Liu, X. H.; Hou, B. F.; Mei, T.; Li, J. H.; Wang, J. Y.; Wang, X. B. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon. 2018, 130, 250–256.

    Article  CAS  Google Scholar 

  67. Yang, Y.; Zhao, R. Q.; Zhang, T. F.; Zhao, K.; Xiao, P. S.; Ma, Y. F.; Ajayan, P. M.; Shi, G. Q.; Chen, Y. S. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano. 2018, 12, 829–835.

    Article  CAS  Google Scholar 

  68. Irshad, M. S.; Wang, X. B.; Abbas, A.; Yu, F.; Li, J. H.; Wang, J. Y.; Mei, T.; Qian, J. W.; Wu, S. L.; Javed, M. Q. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon. 2021, 176, 313–326.

    Article  CAS  Google Scholar 

  69. Geng, Y.; Sun, W.; Ying, P. J.; Zheng, Y. J.; Ding, J.; Sun, K.; Li, L.; Li, M. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 2021, 31, 2007648.

    Article  CAS  Google Scholar 

  70. Mu, P.; Bai, W.; Fan, Y. K.; Zhang, Z.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation. J. Mater. Chem. A. 2019, 7, 9673–9679.

    Article  CAS  Google Scholar 

  71. Wang, C. Z.; Wang, Y. C.; Song, X. J.; Huang, M. H.; Jiang, H. Q. A facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation. Adv. Sustain. Syst. 2019, 3, 1800108.

    Article  Google Scholar 

  72. Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, 1807716.

    Article  Google Scholar 

  73. Jia, J.; Liang, W. D.; Sun, H. X.; Zhu, Z. Q.; Wang, C. J.; Li, A. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency. Chem. Eng. J. 2019, 361, 999–1006.

    Article  CAS  Google Scholar 

  74. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  CAS  Google Scholar 

  75. Chen, Q. M.; Pei, Z. Q.; Xu, Y. S.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 2018, 9, 623–628.

    Article  CAS  Google Scholar 

  76. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  77. Cao, S. S.; Jiang, Q. S.; Wu, X. H.; Ghim, D.; Derami, H. G.; Chou, P. I.; Jun, Y. S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A. 2019, 7, 24092–24123.

    Article  CAS  Google Scholar 

  78. Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    Article  CAS  Google Scholar 

  79. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA. 2016, 113, 13953–13958.

    Article  CAS  Google Scholar 

  80. Geng, Y.; Zhang, K. Z.; Yang, K.; Ying, P. J.; Hu, L. J.; Ding, J.; Xue, J. M.; Sun, W.; Sun, K.; Li, M. Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon. 2019, 155, 25–33.

    Article  CAS  Google Scholar 

  81. Zhang, W.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Liu, R. P.; Qu, J. H. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation. ACS Appl. Mater. Interfaces. 2019, 11, 9974–9983.

    Article  CAS  Google Scholar 

  82. Tahir, Z.; Kim, S.; Ullah, F.; Lee, S.; Lee, J. H.; Park, N. W.; Seong, M. J.; Lee, S. K.; Ju, T. S.; Park, S. et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides. ACS Appl. Mater. Interfaces. 2020, 12, 2490–2496.

    Article  CAS  Google Scholar 

  83. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    Article  CAS  Google Scholar 

  84. Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A. 2018, 6, 15303–15309.

    Article  CAS  Google Scholar 

  85. Zhang, P. P.; Liao, Q. H.; Zhang, T.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Li, C.; Jiang, L.; Qu, L. T. High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy. 2018, 46, 415–422.

    Article  CAS  Google Scholar 

  86. Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

    Article  CAS  Google Scholar 

  87. Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

    Article  CAS  Google Scholar 

  88. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Wang, X. Q.; Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

    Article  Google Scholar 

  89. Zhong, J. X.; Huang, C. L.; Wu, D. X.; Lin, Z. Z. Influence factors of the evaporation rate of a solar steam generation system: A numerical study. Int. J. Heat Mass Transf. 2019, 128, 860–864.

    Article  Google Scholar 

  90. Jiang, L. L.; Sheng, L. Z.; Fan, Z. J. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158.

    Article  CAS  Google Scholar 

  91. Tao, P.; Shang, W.; Song, C. Y.; Shen, Q. C.; Zhang, F. Y.; Luo, Z.; Yi, N.; Zhang, D.; Deng, T. Bioinspired engineering of thermal materials. Adv. Mater. 2015, 27, 428–463.

    Article  CAS  Google Scholar 

  92. Lai, M.; Kulak, A. N.; Law, D.; Zhang, Z. B.; Meldrum, F. C.; Riley, D. J. Profiting from nature: Macroporous copper with superior mechanical properties. Chem. Commun. 2007, 3547–3549.

    Google Scholar 

  93. Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces. 2020, 12, 2171–2179.

    Article  CAS  Google Scholar 

  94. Xue, G. B.; Liu, K.; Chen, Q.; Yang, P. H.; Li, J.; Ding, T. P.; Duan, J. J.; Qi, B.; Zhou, J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces. 2017, 9, 15052–15057.

    Article  CAS  Google Scholar 

  95. Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.

    Article  Google Scholar 

  96. Wu, X.; Chen, G. Y.; Zhang, W.; Liu, X. L.; Xu, H. L. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 2017, 1, 1700046.

    Article  Google Scholar 

  97. Chen, Z. J.; Dang, B.; Luo, X. F.; Li, W.; Li, J.; Yu, H. P.; Liu, S. X.; Li, S. J. Deep eutectic solvent-assisted in situ wood delignification: A promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl. Mater. Interfaces. 2019, 11, 26032–26037.

    Article  CAS  Google Scholar 

  98. Guo, D. F.; Yang, X. C. Highly efficient solar steam generation of low cost TiN/bio-carbon foam. Sci. China Mater. 2019, 62, 711–718.

    Article  CAS  Google Scholar 

  99. Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

    Article  Google Scholar 

  100. He, F.; Han, M. C.; Zhang, J.; Wang, Z. X.; Wu, X. C.; Zhou, Y. Y.; Jiang, L. F.; Peng, S. Q.; Li, Y. X. A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy. 2020, 71, 104650.

    Article  CAS  Google Scholar 

  101. Chen, T. J.; Wu, Z. Z.; Liu, Z. Y.; Aladejana, J. T.; Wang, X. D.; Niu, M.; Wei, Q. H.; Xie, Y. Q. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces. 2020, 12, 19511–19518.

    Article  CAS  Google Scholar 

  102. Long, Y. J.; Huang, S. L.; Yi, H.; Chen, J. Q.; Wu, J. H.; Liao, Q. F.; Liang, H. W.; Cui, H. Z.; Ruan, S. C.; Zeng, Y. J. Carrot-inspired solar thermal evaporator. J. Mater. Chem. A. 2019, 7, 26911–26916.

    Article  CAS  Google Scholar 

  103. Zhang, Y. X.; Ravi, S. K.; Vaghasiya, J. V.; Tan, S. C. A barbequeanalog route to carbonize moldy bread for efficient steam generation. iScience. 2018, 3, 31–39.

    Article  CAS  Google Scholar 

  104. Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy. 2019, 65, 104006.

    Article  CAS  Google Scholar 

  105. Han, X.; Wang, W. P.; Zuo, K. C.; Chen, L.; Yuan, L.; Liang, J.; Li, Q. L.; Ajayan, P. M.; Zhao, Y.; Lou, J. Bio-derived ultrathin membrane for solar driven water purification. Nano Energy. 2019, 60, 567–575.

    Article  CAS  Google Scholar 

  106. Fang, Q.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces. 2019, 11, 10672–10679.

    Article  CAS  Google Scholar 

  107. Sun, Z. Z.; Li, W. Z.; Song, W. L.; Zhang, L. C.; Wang, Z. K. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J. Mater. Chem. A. 2020, 8, 349–357.

    Article  CAS  Google Scholar 

  108. Khajevand, M.; Azizian, S.; Boukherroub, R. Naturally abundant green moss for highly efficient solar thermal generation of clean water. ACS Appl Mater Interfaces. 2021, 13, 31680–31690.

    Article  CAS  Google Scholar 

  109. Zheng, Z. M.; Li, H. Y.; Zhang, X. D.; Jiang, H.; Geng, X. M.; Li, S. M.; Tu, H. Y.; Cheng, X. R.; Yang, P.; Wan, Y. F. Highabsorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation. Nano Energy. 2020, 68, 104298.

    Article  CAS  Google Scholar 

  110. Wang, H. Q.; Zhang, C.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Artificial trees inspired by Monstera for highly efficient solar steam generation in both normal and weak light environments. Adv. Funct. Mater. 2020, 30, 2005513.

    Article  CAS  Google Scholar 

  111. Cheng, H. Y.; Liu, X. H.; Zhang, L. X.; Hou, B. F.; Yu, F.; Shi, Z. X.; Wang, X. B. Self-floating Bi2S3/poly (vinylidene fluoride) composites on polyurethane sponges for efficient solar water purification. Sol. Energy Mater. Sol. Cells. 2019, 203, 110127.

    Article  CAS  Google Scholar 

  112. Li, K. R.; Chang, T. H.; Li, Z. P.; Yang, H. T.; Fu, F. F.; Li, T. T.; Ho, J. S.; Chen, P. Y. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019, 9, 1901687.

    Article  Google Scholar 

  113. Yang, L.; Zou, Y.; Xia, W.; Li, H. T.; He, X. Y.; Zhou, Y.; Liu, X. H.; Zhang, C. Q.; Li, Y. W. Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Res. 2021, 14, 969–975.

    Article  CAS  Google Scholar 

  114. Lou, J. W.; Liu, Y.; Wang, Z. Y.; Zhao, D. W.; Song, C. Y.; Wu, J. B.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces. 2016, 8, 14628–14636.

    Article  CAS  Google Scholar 

  115. Liu, Y.; Lou, J. W.; Ni, M. T.; Song, C. Y.; Wu, J. B.; Dasgupta, N. P.; Tao, P.; Shang, W.; Deng, T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces. 2016, 8, 772–779.

    Article  CAS  Google Scholar 

  116. Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A bioinspired elastic hydrogel for solar-driven water purification. Adv Mater. 2021, 33, 2007833.

    Article  CAS  Google Scholar 

  117. Wheeler, T. D.; Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature. 2008, 455, 208–212.

    Article  CAS  Google Scholar 

  118. Cooper, T. A.; Zandavi, S. H.; Ni, G. W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S. V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 5086.

    Article  CAS  Google Scholar 

  119. Xiao, C. H.; Chen, L. H.; Mu, P.; Jia, J.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Sugarcane-based photothermal materials for efficient solar steam generation. ChemistrySelect. 2019, 4, 7891–7895.

    Article  CAS  Google Scholar 

  120. Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

    Article  Google Scholar 

  121. Liu, J.; Liu, Q. L.; Ma, D. L.; Yuan, Y.; Yao, J. H.; Zhang, W.; Su, H. L.; Su, Y. S.; Gu, J. J.; Zhang, D. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation. J. Mater. Chem. A. 2019, 7, 9034–9039.

    Article  CAS  Google Scholar 

  122. Liu, P. F.; Miao, L.; Deng, Z. Y.; Zhou, J. H.; Su, H.; Sun, L. X.; Tanemura, S.; Cao, W. J.; Jiang, F. M.; Zhao, L. D. A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Mater. Today Energy. 2018, 8, 166–173.

    Article  CAS  Google Scholar 

  123. Zhang, Q.; Hu, R.; Chen, Y. L.; Xiao, X. F.; Zhao, G. M.; Yang, H. J.; Li, J. H.; Xu, W. L.; Wang, X. B. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl. Energy. 2020, 276, 115545.

    Article  CAS  Google Scholar 

  124. Xu, W.; Xing, Y.; Liu, J.; Wu, H.; Cui, Y.; Li, D.; Guo, D.; Li, C.; Liu, A.; Bai, H. Efficient Water Transport and Solar Steam Generation via Radially, Hierarchically Structured Aerogels. ACS Nano 2019, 13, 7930–7938.

    Article  CAS  Google Scholar 

  125. Wu, L.; Dong, Z.; Cai, Z.; Ganapathy, T.; Fang, N. X.; Li, C.; Yu, C.; Zhang, Y.; Song, Y. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications 2020, 11, 521.

    Article  Google Scholar 

  126. Zang, L. L.; Finnerty, C.; Zheng, S. X.; Conway, K.; Sun, L. G.; Ma, J.; Mi, B. X. Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Res. 2021, 198, 117135.

    Article  CAS  Google Scholar 

  127. Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

    Article  CAS  Google Scholar 

  128. Li, J. Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H. X.; Zhu, Z. Q.; Zhang, J. W.; Li, W. W.; Li, A. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators. ACS Appl. Mater. Interfaces. 2020, 12, 798–806.

    Article  CAS  Google Scholar 

  129. He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

    Article  CAS  Google Scholar 

  130. Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature. 2010, 463, 640–643.

    Article  CAS  Google Scholar 

  131. Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

    Article  Google Scholar 

  132. Cao, M. Y.; Ju, J.; Li, K.; Dou, S. X.; Liu, K. S.; Jiang, L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 2014, 24, 3235–3240.

    Article  CAS  Google Scholar 

  133. Song, C.; Zheng, Y. M. Wetting-controlled strategies: From theories to bio-inspiration. J. Colloid Interface Sci. 2014, 427, 2–14.

    Article  CAS  Google Scholar 

  134. Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward, L. J.; Teare, D. O. H.; Badyal, J. P. S. Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir. 2007, 23, 689–693.

    Article  CAS  Google Scholar 

  135. Nakajima, A.; Nakagawa, Y.; Furuta, T.; Sakai, M.; Isobe, T.; Matsushita, S. Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir. 2013, 29, 9269–9275.

    Article  CAS  Google Scholar 

  136. Gao, C. R.; Sun, Z. X.; Li, K.; Chen, Y. N.; Cao, Y. Z.; Zhang, S. Y.; Feng, L. Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy Environ. Sci. 2013, 6, 1147–1151.

    Article  CAS  Google Scholar 

  137. Shang, M.; Wang, W. Z.; Sun, S. M.; Gao, E. P.; Zhang, Z. J.; Zhang, L.; O’Hayre, R. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: An application in photocatalysis. Nanoscale. 2013, 5, 5036–5042.

    Article  CAS  Google Scholar 

  138. Zhou, H.; Xu, J.; Liu, X. H.; Zhang, H. W.; Wang, D. T.; Chen, Z. H.; Zhang, D.; Fan, T. X. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 2018, 28, 1705309.

    Article  Google Scholar 

  139. Pris, A. D.; Utturkar, Y.; Surman, C.; Morris, W. G.; Vert, A.; Zalyubovskiy, S.; Deng, T.; Ghiradella, H. T.; Potyrailo, R. A. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photon. 2012, 6, 195–200.

    Article  CAS  Google Scholar 

  140. Gorbunov, V.; Fuchigami, N.; Stone, M.; Grace, M.; Tsukruk, V. V. Biological thermal detection: Micromechanical and microthermal properties of biological infrared receptors. Biomacromolecules. 2002, 3, 106–115.

    Article  CAS  Google Scholar 

  141. Zhang, L.; Sheng, D. L.; Wang, D.; Yao, Y. Z.; Yang, K.; Wang, Z. G.; Deng, L. M.; Chen, Y. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics. 2018, 8, 1591–1606.

    Article  CAS  Google Scholar 

  142. Gou, Y.; Miao, D. D.; Zhou, M.; Wang, L. J.; Zhou, H. Y.; Su, G. X. Bio-inspired protein-based nanoformulations for cancer theranostics. Front. Pharmacol. 2018, 9, 421.

    Article  Google Scholar 

  143. Farokhi, M.; Mottaghitalab, F.; Saeb, M. R.; Thomas, S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J. Control. Release. 2019, 309, 203–219.

    Article  CAS  Google Scholar 

  144. Jagdish, A, K.; Garg, K.; Ramamurthy, P. C.; Mahapatra, D. R.; Hegde, G. Moldable biomimetic nanoscale optoelectronic platforms for simultaneous enhancement in optical absorption and charge transport. Nanoscale. 2018, 10, 3730–3737.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by research grants from the National Natural Science Foundation of China (No. 52173235), Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0375), Fundamental Research Funds for the Central Universities (Nos. 2020CDJQY-A055 and 2019CDXYDL0007), Key Innovation Project for Clinical Technology of the Second Affiliated Hospital of Army Medical University (No. 2018JSLC0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Additional information

Conflicts of interest

There is no conflict to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Jiao, K., Liu, X. et al. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Res. 15, 3122–3142 (2022). https://doi.org/10.1007/s12274-021-3834-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3834-9

Keywords

Navigation