Skip to main content
Log in

Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Neuromorphic machine vision has attracted extensive attention on wide fields. However, both current and emerging strategies still suffer from power/time inefficiency, and/or low compatibility, complex device structure. Here we demonstrate a driving-voltage-free optoelectronic synaptic device using non-volatile reconfigurable photovoltaic effect based on MoTe2/α-In2Se3 ferroelectric p-n junctions. This function comes from the non-volatile reconfigurable built-in potential in the p-n junction that is related to the ferroelectric polarization in α-In2Se3. Reconfigurable rectification behavior and photovoltaic effect are demonstrated firstly. Notably, the figure-of-merits for photovoltaic effect like photoelectrical conversion efficiency non-volatilely increases more than one order. Based on this, retina synapse-like vision functions are mimicked. Optoelectronic short-term and long-term plasticity, as well as basic neuromorphic learning and memory rule are achieved without applying driving voltage. Our work highlights the potential of ferroelectric p-n junctions for enhanced solar cell and low-power optoelectronic synaptic device for neuromorphic machine vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90.

    Article  Google Scholar 

  2. Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A. R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Proc. Mag. 2012, 29, 82–97.

    Article  Google Scholar 

  3. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.

    Article  CAS  Google Scholar 

  4. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576.

    Article  Google Scholar 

  5. Cottini, N.; Gottardi, M.; Massari, N.; Passerone, R.; Smilansky, Z. A 33 µW 64 × 64 pixel vision sensor embedding robust dynamic background subtraction for event detection and scene interpretation. IEEE J. Solid-State Circuits 2013, 48, 850–863.

    Article  Google Scholar 

  6. Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.

    Article  CAS  Google Scholar 

  7. Chai, Y. In-sensor computing for machine vision. Nature 2020, 579, 32–33.

    Article  CAS  Google Scholar 

  8. Kolb, H. How the retina works: Much of the construction of an image takes place in the retina itself through the use of specialized neural circuits. Am. Sci. 2003, 91, 28–35.

    Article  Google Scholar 

  9. Kyuma, K.; Lange, E.; Ohta, J.; Hermanns, A.; Banish, B.; Oita, M. Artificial retinas-fast, versatile image processors. Nature 1994, 372, 197–198.

    Article  CAS  Google Scholar 

  10. Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

    Article  Google Scholar 

  11. Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806.

    Article  CAS  Google Scholar 

  12. Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

    Article  Google Scholar 

  13. Pradhan, B.; Das, S.; Li, J. X.; Chowdhury, F.; Cherusseri, J.; Pandey, D.; Dev, D.; Krishnaprasad, A.; Barrios, E.; Towers, A. et al. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 2020, 6, eaay5225.

    Article  CAS  Google Scholar 

  14. Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

    Article  CAS  Google Scholar 

  15. Donati, S. Photodetectors: Devices, Circuits and Applications; Prentice Hall PTR: Upper Saddle River, 1999.

    Google Scholar 

  16. Meyer, R.; Waser, R. Hysteretic resistance concepts in ferroelectric thin films. J. Appl. Phys. 2006, 100, 051611.

    Article  Google Scholar 

  17. Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315, 954–959.

    Article  CAS  Google Scholar 

  18. Jerry, M.; Chen, P. Y.; Zhang, J. C.; Sharma, P.; Ni, K.; Yu, S. M.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017, pp 6.2.1–6.2.4.

  19. Seo, M.; Kang, M. H.; Jeon, S. B.; Bae, H.; Hur, J.; Jang, B. C.; Yun, S.; Cho, S.; Kim, W. K.; Kim, M. S. et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 2018, 39, 1445–1448.

    Article  CAS  Google Scholar 

  20. Berdan, R.; Marukame, T.; Ota, K.; Yamaguchi, M.; Saitoh, M.; Fujii, S.; Deguchi, J.; Nishi, Y. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron. 2020, 3, 259–266.

    Article  Google Scholar 

  21. Khan, A. I.; Keshavarzi, A.; Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020, 3, 588–597.

    Article  Google Scholar 

  22. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

    Article  Google Scholar 

  23. Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17, 5508–5513.

    Article  CAS  Google Scholar 

  24. Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

    Article  CAS  Google Scholar 

  25. Xiao, J.; Zhu, H. Y.; Wang, Y.; Feng, W.; Hu, Y. X.; Dasgupta, A.; Han, Y. M.; Wang, Y.; Muller, D. A.; Martin, L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601.

    Article  CAS  Google Scholar 

  26. Si, M. W.; Saha, A. K.; Gao, S. J.; Qiu, G.; Qin, J. K.; Duan, Y. Q.; Jian, J.; Niu, C.; Wang, H. Y.; Wu, W. Z. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586.

    Article  CAS  Google Scholar 

  27. Zheng, C. X.; Yu, L.; Zhu, L.; Collins, J. L.; Kim, D.; Lou, Y. D.; Xu, C.; Li, M.; Wei, Z.; Zhang, Y. P. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 2018, 4, eaar7720.

  28. Wang, L.; Wang, X. J.; Zhang, Y. S.; Li, R. L.; Ma, T.; Leng, K.; Chen, Z.; Abdelwahab, I.; Loh, K. P. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Funct. Mater. 2020, 30, 2004609.

    Article  CAS  Google Scholar 

  29. Xue, F.; He, X.; Liu, W. H.; Periyanagounder, D.; Zhang, C. H.; Chen, M. G.; Lin, C. H.; Luo, L. Q.; Yengel, E.; Tung, V. et al. Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 2020, 30, 2004206.

    Article  CAS  Google Scholar 

  30. Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895–3903.

    Article  CAS  Google Scholar 

  31. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  32. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  CAS  Google Scholar 

  33. Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558–7566.

    Article  CAS  Google Scholar 

  34. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  CAS  Google Scholar 

  35. Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

    Article  CAS  Google Scholar 

  36. Xu, K.; Jiang, W.; Gao, X. S.; Zhao, Z. J.; Low, T.; Zhu, W. J. Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale 2020, 12, 23488–23496.

    Article  CAS  Google Scholar 

  37. Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.

    Article  CAS  Google Scholar 

  38. Blom, P. W. M.; Wolf, R. M.; Cillessen, J. F. M.; Krijn, M. P. C. M. Ferroelectric schottky diode. Phys. Rev. Lett. 1994, 73, 2107–2110.

    Article  CAS  Google Scholar 

  39. Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

    Article  Google Scholar 

  40. Chang, T.; Jo, S. H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676.

    Article  CAS  Google Scholar 

  41. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0703700 and 2016YFA0200700), the National Natural Science Foundation of China (Nos. 91964203, 61625401, 61851403, 61974036, 61804146, and 61804035), the strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors also gratefully acknowledge the support of Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxing Wang or Jun He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, F., Wang, Z. et al. Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction. Nano Res. 14, 4328–4335 (2021). https://doi.org/10.1007/s12274-021-3833-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3833-x

Keywords

Navigation