Skip to main content
Log in

Bipolar synaptic organic/inorganic heterojunction transistor with complementary light modulation and low power consumption for energy-efficient artificial vision systems

用于低能耗人工视觉系统的具有互补光调制和低功耗的双极突触有机/无机异质结晶体管

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photoelectric synaptic transistors integrate optical sensing and synaptic functions into a single device, which has significant advantages in neuromorphic computing for visual information, recognition, memory, and processing. However, the weight updating of existing photoelectric synapses is predominantly based on separate utilization of light and electrical stimuli to regulate synaptic excitation and inhibition. This approach significantly restricts the processing speed and application scenarios of devices. In this work, we propose bipolar synaptic organic/inorganic heterojunction transistor (BSOIHT) that can effectively simulate bidirectional (excitatory/inhibitory) synaptic behavior under light stimulation. Furthermore, by changing the position of electrode contacts and the metals of source and drain electrodes, carrier injection of the transistor is significantly improved with reduced synaptic event power consumption down to 2.4 fJ. Moreover, the BSOIHTs are adopted to build the neuromorphic vision system, which effectively facilitates image preprocessing and substantially enhances the recognition accuracy from 44.93% to 87.01%. This paper provides new avenues for the construction of energy-efficient artificial vision systems.

摘要

光电突触晶体管将光传感和突触功能集成到单个器件中, 在视觉信息采集、识别、记忆和处理的神经形态计算具有显著的优势. 然而, 现有光电突触的权重更新主要是基于光刺激和电刺激分别调节突触的兴奋和抑制. 这种方式严重限制了器件的处理速度和应用场景. 在这项工作中, 我们提出了双极突触有机/无机异质结晶体管(BSOIHT),可以有效地模拟光刺激下的双向(兴奋/抑制)突触行为. 此外, 通过优化电极接触位置以及电极材料, 晶体管的载流子注入得到了显著改善, 使得突触事件功耗降至2.4 fJ. 此外, 采用BSOIHT构建的神经形态视觉系统, 有效地促进了图像预处理, 将识别准确率从44.93%大幅提高到87.01%. 这为构建低能耗的人工视觉系统提供了新的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668–673

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Wu S, Yu R, et al. Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter, 2022, 5: 3023–3040

    Article  CAS  Google Scholar 

  3. Liu Y, Yang W, Yan Y, et al. Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy, 2020, 75: 104930

    Article  CAS  Google Scholar 

  4. Guo P, Jia M, Guo D, et al. Retina-inspired in-sensor broadband image preprocessing for accurate recognition via the flexophototronic effect. Matter, 2023, 6: 537–553

    Article  CAS  Google Scholar 

  5. Zhang Z, Wang S, Liu C, et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol, 2022, 17: 27–32

    Article  PubMed  Google Scholar 

  6. Li H, Jiang X, Ye W, et al. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65: 104000

    Article  CAS  Google Scholar 

  7. Matthews BHC. Sensory mechanisms of the retina. Nature, 1949, 163: 423–424

    Article  Google Scholar 

  8. Dang B, Liu K, Wu X, et al. One-phototransistor-one-memristor array with high-linearity light-tunable weight for optic neuromorphic computing. Adv Mater, 2023, 35: 2204844

    Article  CAS  Google Scholar 

  9. Lv Z, Chen M, Qian F, et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv Funct Mater, 2019, 29: 1902374

    Article  Google Scholar 

  10. Shan L, Chen Q, Yu R, et al. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multimodal information recognition. Nat Commun, 2023, 14: 2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tao L, Jiang B, Ma S, et al. 3D trigonal FAPbI3-based multilevel resistive switching nonvolatile memory for artificial neural synapse. SmartMat, 2023, e1233

  12. Jörntell H, Hansel C. Synaptic memories upside down: Bidirectional plasticity at cerebellar parallel fiber-purkinje cell synapses. Neuron, 2006, 52: 227–238

    Article  PubMed  Google Scholar 

  13. Zhu X, Gao C, Ren Y, et al. High-contrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection. Adv Mater, 2023, 35: 2301468

    Article  CAS  Google Scholar 

  14. Geiger M, Petrini L, Wyart M. Landscape and training regimes in deep learning. Phys Rep, 2021, 924: 1–18

    Article  Google Scholar 

  15. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436–444

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Kang Y, Hao H, et al. All two-dimensional integration-type optoelectronic synapse mimicking visual attention mechanism for multi-target recognition. Adv Funct Mater, 2023, 33: 2209781

    Article  CAS  Google Scholar 

  17. Zhang J, Guo Z, Sun T, et al. Energy-efficient organic photoelectric synaptic transistors with environment-friendly CuInSe2 quantum dots for broadband neuromorphic computing. SmartMat, 2023, n/a: e1246

  18. Zhu C, Liu H, Wang W, et al. Optical synaptic devices with ultra-low power consumption for neuromorphic computing. Light Sci Appl, 2022, 11: 337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji R, Feng G, Jiang C, et al. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv Elect Mater, 2022, 8: 2101402

    Article  CAS  Google Scholar 

  20. Kwon SM, Kwak JY, Song S, et al. Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits. Adv Mater, 2021, 33: 2105017

    Article  CAS  Google Scholar 

  21. Shan X, Zhao C, Wang X, et al. Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision. Adv Sci, 2022, 9: 2104632

    Article  CAS  Google Scholar 

  22. Wu R, Liu X, Yuan Y, et al. Biomimetic artificial tetrachromatic photoreceptors based on fully light-controlled 2D transistors. Adv Funct Mater, 2023, 33: 2305677

    Article  CAS  Google Scholar 

  23. Hou YX, Li Y, Zhang ZC, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 2021, 15: 1497–1508

    Article  CAS  PubMed  Google Scholar 

  24. Yang CM, Chen TC, Verma D, et al. Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics. Adv Funct Mater, 2020, 30: 2001598

    Article  CAS  Google Scholar 

  25. Li X, Yu B, Wang B, et al. Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET). Small, 2021, 17: 2101434

    Article  CAS  Google Scholar 

  26. Xie P, Chen X, Zeng Z, et al. Artificial visual systems with tunable photoconductivity based on organic molecule-nanowire heterojunctions. Adv Funct Mater, 2023, 33: 2209091

    Article  CAS  Google Scholar 

  27. Zhang Q, Li E, Wang Y, et al. Ultralow-power vertical transistors for multilevel decoding modes. Adv Mater, 2023, 35: 2208600

    Article  CAS  Google Scholar 

  28. Venkateshvaran D, Nikolka M, Sadhanala A, et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515: 384–388

    Article  CAS  PubMed  Google Scholar 

  29. Liu T, Zhang X, Zhang J, et al. Interface study of ITO/ZnO and ITO/SnO2 complex transparent conductive layers and their effect on CdTe solar cells. Int J Photoenergy, 2013, 2013: 1–8

    Google Scholar 

  30. Li E, Gao C, Yu R, et al. MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat Commun, 2022, 13: 2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lillicrap TP, Santoro A, Marris L, et al. Backpropagation and the brain. Nat Rev Neurosci, 2020, 21: 335–346

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Liu D, Gao C, et al. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat Commun, 2022, 13: 7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abbott LF, Regehr WG. Synaptic computation. Nature, 2004, 431: 796–803

    Article  CAS  PubMed  Google Scholar 

  34. Shan L, Zeng H, Liu Y, et al. Artificial tactile sensing system with photoelectric output for high accuracy haptic texture recognition and parallel information processing. Nano Lett, 2022, 22: 7275–7283

    Article  CAS  PubMed  Google Scholar 

  35. Yu R, He L, Gao C, et al. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat Commun, 2022, 13: 7019

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qin S, Wang F, Liu Y, et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 2017, 4: 035022

    Article  Google Scholar 

  37. Wang Y, Lv Z, Chen J, et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater, 2018, 30: 1802883

    Article  Google Scholar 

  38. Wang S, Chen C, Yu Z, et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater, 2019, 31: 1806227

    Article  Google Scholar 

  39. Yin L, Han C, Zhang Q, et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 2019, 63: 103859

    Article  CAS  Google Scholar 

  40. Park HL, Kim H, Lim D, et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv Mater, 2020, 32: 1906899

    Article  CAS  Google Scholar 

  41. Zhang ZC, Li Y, Wang JJ, et al. Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Res, 2021, 14: 4591–4600

    Article  CAS  Google Scholar 

  42. Kim J, Song S, Kim H, et al. Light-stimulated artificial photonic synapses based on solution-processed In-Sn-Zn-O transistors for neuromorphic applications. J Alloys Compd, 2022, 903: 163873

    Article  CAS  Google Scholar 

  43. Gupta GK, Kim IJ, Park Y, et al. Inorganic perovskite quantum dot-mediated photonic multimodal synapse. ACS Appl Mater Interfaces, 2023, 15: 18055–18064

    Article  CAS  PubMed  Google Scholar 

  44. Liang J, Yu X, Qiu J, et al. All-optically controlled artificial synapses based on light-induced adsorption and desorption for neuromorphic vision. ACS Appl Mater Interfaces, 2023, 15: 9584–9592

    Article  CAS  Google Scholar 

  45. Mi YC, Yang CH, Shih LC, et al. All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv Opt Mater, 2023, 11: 2300089

    Article  CAS  Google Scholar 

  46. Shao H, Li Y, Yang W, et al. A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing. Adv Mater, 2023, 35: 2208497

    Article  CAS  Google Scholar 

  47. Yan Y, Yu N, Yu Z, et al. Optoelectronic synaptic memtransistor based on 2D SnSe/MoS2 van der Waals heterostructure under UV–ozone treatment. Small Methods, 2023, 7: 2201679

    Article  CAS  Google Scholar 

  48. Gollisch T, Meister M. Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, 2010, 65: 150–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pi L, Wang P, Liang SJ, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron, 2022, 5: 248–254

    Article  CAS  Google Scholar 

  50. Wang CY, Liang SJ, Wang S, et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci Adv, 2020, 6: eaba6173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFB3603802), the National Natural Science Foundation of China (62374033), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ129).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen H and Guo T conceived the project. Liu C, Gao C, and Lian M designed and performed the experiments and collected the data. Liu C, Huang W, and Xu C analyzed and discussed the data. Liu C, Chen H, and Hu W wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Huipeng Chen  (陈惠鹏).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Changfei Liu received his Bachelor’s degree from Fuzhou University in 2021. Now he is a Master student of physical electronics at the School of Physics and Information Engineering, Fuzhou University. His current research interests mainly focus on the photoelectric synaptic devices.

Supporting Information

40843_2024_2812_MOESM1_ESM.pdf

Bipolar Synaptic Organic/Inorganic Heterojunction Transistor with Complementary Light Modulation and Low Power Consumption for Energy-Efficient Artificial Vision Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gao, C., Huang, W. et al. Bipolar synaptic organic/inorganic heterojunction transistor with complementary light modulation and low power consumption for energy-efficient artificial vision systems. Sci. China Mater. 67, 1500–1508 (2024). https://doi.org/10.1007/s40843-024-2812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2812-7

Keywords

Navigation