Skip to main content
Log in

Alloxazine as anode material for high-performance aqueous ammonium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous ammonium-ion battery (AAIB) has attracted much attention due to its low cost, safety, and environmental friendliness, but its electrode materials have many limitations. Here, alloxazine (ALO) is introduced as the anode for the AAIB. With its pseudocapacitive effect and fast diffusion kinetics of NH4+, ALO anode shows excellent rate performance with a specific capacity of 120 mAh/g at 40 C (10 A/g). The full battery is further fabricated by ALO anode and Prussian white analogs cathode. Its specific capacity can reach 110 mAh/g and it can work up to 10, 000 cycles with no obvious capacity fading at 20 C (5 A/g). In addition, the system delivers a high energy density of 122.5 Wh/kg and a power density of 5, 055 W/kg. This work broadens the application prospect of the AAIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

    Article  CAS  Google Scholar 

  2. Wang, G. J.; Fu, L. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem., Int. Ed. 2006, 46, 295–297.

    Article  Google Scholar 

  3. Tang, W.; Liu, L. L.; Zhu, Y. S.; Sun, H.; Wu, Y. P.; Zhu, K. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ. Sci. 2012, 5, 6909–6913.

    Article  CAS  Google Scholar 

  4. Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; Von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 55, 7136–7141.

    Article  CAS  Google Scholar 

  5. Gao, H. C.; Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem., Int. Ed. 2016, 55, 12768–12772.

    Article  CAS  Google Scholar 

  6. Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X. L.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 2017, 7, 1701189.

    Article  Google Scholar 

  7. Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.

    Article  Google Scholar 

  8. Leonard, D. P.; Wei, Z. X.; Chen, G.; Du, F.; Ji, X. L. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 2018, 3, 373–374.

    Article  CAS  Google Scholar 

  9. Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495–503.

    Article  CAS  Google Scholar 

  10. Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2017, 2, 1115–1121.

    Article  CAS  Google Scholar 

  11. Zhao, Q.; Zachman, M. J.; Al Sadat, W. I.; Zheng, J. X.; Kourkoutis, L. F.; Archer, L. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 2018, 4, eaau8131.

    Article  CAS  Google Scholar 

  12. Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

    Article  CAS  Google Scholar 

  13. Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2011, 30, 1703725.

    Article  Google Scholar 

  14. Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.

    Article  CAS  Google Scholar 

  15. Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

    Article  CAS  Google Scholar 

  16. Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

    Article  CAS  Google Scholar 

  17. Liang, G. J.; Mo, F. N.; Ji, X. L.; Zhi, C. Y. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 2021, 6, 109–123.

    Article  CAS  Google Scholar 

  18. Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2011, 159, A98–A103.

    Article  Google Scholar 

  19. Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.

    Article  CAS  Google Scholar 

  20. Wu, X. Y.; Xu, Y. K.; Jiang, H.; Wei, Z. X.; Hong, J. J.; Hernandez, A. S.; Du, F.; Ji, X. L. NH4+ topotactic insertion in Berlin green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 2011, 1, 3077–3083.

    Article  Google Scholar 

  21. Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2011, 54, 9805–9808.

    Article  Google Scholar 

  22. Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and bi-layered V2O5. Chem 2019, 5, 1537–1551.

    Article  CAS  Google Scholar 

  23. Li, C. Y.; Yan, W. Q.; Liang, S. S.; Wang, P.; Wang, J.; Fu, L. J.; Zhu, Y. S.; Chen, Y. H.; Wu, Y. P.; Huang, W. Achieving a highperformance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 2019, 4, 991–998.

    Article  CAS  Google Scholar 

  24. Li, H.; Yang, J.; Cheng, J. L.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020, 68, 104369.

    Article  CAS  Google Scholar 

  25. Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Y. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

    Article  CAS  Google Scholar 

  26. Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

    Article  CAS  Google Scholar 

  27. Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Aqueous organic redox flow batteries. Nano Res. 2019, 12, 1988–2001.

    Article  CAS  Google Scholar 

  28. Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

    Article  CAS  Google Scholar 

  29. Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.

    Article  CAS  Google Scholar 

  30. Zhong, L. Q.; Lu, Y.; Li, H. X.; Tao, Z. L.; Chen, J. Highperformance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustainable Chem. Eng. 2011, 6, 7761–7768.

    Article  Google Scholar 

  31. Cheng, L. W.; Liang, Y. H.; Zhu, Q. N.; Yu, D. D.; Chen, M. X.; Liang, J. F.; Wang, H. Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem. Asian J. 2020, 15, 1290–1295.

    Article  CAS  Google Scholar 

  32. Sun, T. J.; Liu, C.; Xu, X. F.; Nian, Q. S.; Zheng, S. B.; Hou, X. S.; Liang, J.; Tao, Z. L. Insights into the hydronium-ion storage of alloxazine in mild electrolyte. J. Mater. Chem. A 2020, 8, 21983–21987.

    Article  CAS  Google Scholar 

  33. Chen, S.; Foss, F. W. Jr. Aerobic organocatalytic oxidation of aryl aldehydes: Flavin catalyst turnover by Hantzsch’s ester. Org. Lett. 2012, 14, 5150–5153.

    Article  CAS  Google Scholar 

  34. Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

    Article  Google Scholar 

  35. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. John Wiley & Sons, Inc.: New York, 2001.

    Google Scholar 

  36. Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882–1888.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported the National Natural Science Foundation of China (Nos. 51771094 and 21835004), Ministry of Education of China (Nos. B12015 and IRT13R30), and Tianjin Natural Science Foundation (No. 18JCZDJC31500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanliang Tao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Sun, T., Nian, Q. et al. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 15, 2047–2051 (2022). https://doi.org/10.1007/s12274-021-3777-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3777-1

Keywords

Navigation