Skip to main content
Log in

Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The extension of plasmonics to materials beyond the conventional noble metals opens up a novel and exciting regime after the inspiring discovery of characteristic localized surface plasmon resonances (LSPRs) in doped semiconductor nanocrystals originating from the collective oscillations of free holes in the valence band. We herein prepare colloidal monodisperse eccentric dual plasmonic noble metal-nonstoichiometric copper chalcogenide (Au@Cu2−xSe) hybrid hetero-nanostructures with precisely controlled semiconductor shell size and two tunable LSPRs in both visible (VIS) and near-infrared (NIR) regions associated with Au and Cu2−xSe, respectively. Through systematic evaluations of the photocatalytic performance of Au@Cu2−xSe upon sole NIR and dual VIS + NIR simultaneous excitations, we are capable of unambiguously elucidating the role of plasmonic coupling between two dissimilar building blocks on the accelerated photocatalytic reactions with greater rate constants from both experimental and computational perspectives. The significantly enhanced strength of the electromagnetic field arising from efficient plasmonic coupling under the excitation of two LSPRs results in the superior activities of dual plasmonic Au@Cu2−xSe in photocatalysis. The new physical and chemical insights gained from this work provide the keystone for the rational design and construction of high-quality dual- or even multi-plasmonic nano-systems with optimized properties for widespread applications ranging from photocatalysis to molecular spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  2. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  CAS  Google Scholar 

  3. Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.

    Article  CAS  Google Scholar 

  4. Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53–62.

    Article  Google Scholar 

  5. Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

    Article  CAS  Google Scholar 

  6. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  CAS  Google Scholar 

  7. Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636.

    Article  CAS  Google Scholar 

  8. Comin, A.; Manna, L. New materials for tunable plasmonic colloidal nanocrystals. Chem. Soc. Rev. 2014, 43, 3957–3975.

    Article  CAS  Google Scholar 

  9. Faucheaux, J. A.; Stanton, A. L. D.; Jain, P. K. Plasmon resonances of semiconductor nanocrystals: Physical principles and new opportunities. J. Phys. Chem. Lett. 2014, 5, 976–985.

    Article  CAS  Google Scholar 

  10. Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261.

    Article  CAS  Google Scholar 

  11. Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

    Article  CAS  Google Scholar 

  12. Hsu, S. W.; On, K.; Tao, A. R. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 19072–19075.

    Article  CAS  Google Scholar 

  13. Dorfs, D.; Härtling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2−xSe nanocrystals. J. Am. Chem. Soc. 2011, 133, 11175–11180.

    Article  CAS  Google Scholar 

  14. Kriegel, I.; Jiang, C. Y.; Rodríguez-Fernández, J.; Schaller, R. D.; Talapin, D. V.; da Como, E.; Feldmann, J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583–1590.

    Article  CAS  Google Scholar 

  15. Li, W. H.; Zamani, R.; Gil, P. R.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R. A.; Parak, W. J.; Arbiol, J. et al. Cute nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 2013, 135, 7098–7101.

    Article  CAS  Google Scholar 

  16. Xie, Y.; Carbone, L.; Nobile, C.; Grillo, V.; D’Agostino, S.; Della Sala, F.; Giannini, C.; Altamura, D.; Oelsner, C.; Kryschi, C. et al. Metallic-like stoichiometric copper sulfide nanocrystals: Phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano 2013, 7, 7352–7369.

    Article  CAS  Google Scholar 

  17. Córdova-Castro, R. M.; Casavola, M.; van Schilfgaarde, M.; Krasavin, A. V.; Green, M. A.; Richards, D.; Zayats, A. V. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion. ACS Nano 2019, 13, 6550–6560.

    Article  Google Scholar 

  18. Liu, Y.; Liu, M. X.; Swihart, M. T. Plasmonic copper sulfide-based materials: A brief introduction to their synthesis, doping, alloying, and applications. J. Phys. Chem. C 2017, 121, 13435–13447.

    Article  CAS  Google Scholar 

  19. Chen, J.; Liu, T. Y.; Bao, D. Y.; Zhang, B.; Han, G.; Liu, C.; Tang, J.; Zhou, D. L.; Yang, L.; Chen, Z. G. Nanostructured monoclinic Cu2Se as a near-room-temperature thermoelectric material. Nanoscale 2020, 12, 20536–20542.

    Article  CAS  Google Scholar 

  20. Min, Y.; Im, E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 2019, 12, 1750–1769.

    Article  CAS  Google Scholar 

  21. Liu, X.; Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908–3920.

    Article  CAS  Google Scholar 

  22. Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am Chem. Soc. 2012, 134, 3995–3998.

    Article  CAS  Google Scholar 

  23. Ye, X. C.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Murray, C. B. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. J. Am Chem. Soc. 2014, 136, 11680–11686.

    Article  CAS  Google Scholar 

  24. Ye, X. C.; Hickey, D. R.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106–5115.

    Article  CAS  Google Scholar 

  25. Liu, Z. K.; Zhong, Y. X.; Shafei, I.; Jeong, S.; Wang, L. G.; Nguyen, H. T.; Sun, C. J.; Li, T.; Chen, J.; Chen, L. et al. Broadband tunable mid-infrared plasmon resonances in cadmium oxide nanocrystals induced by size-dependent nonstoichiometry. Nano Lett. 2020, 20, 2821–2828.

    Article  CAS  Google Scholar 

  26. Liu, Z. K.; Zhong, Y. X.; Shafei, I.; Borman, R.; Jeong, S.; Chen, J.; Losovyj, Y.; Gao, X. F.; Li, N.; Du, Y. P. et al. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat. Commun. 2019, 10, 1394.

    Article  Google Scholar 

  27. Palomaki, P. K. B.; Miller, E. M.; Neale, N. R. Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals. J. Am. Chem. Soc. 2013, 135, 14142–14150.

    Article  CAS  Google Scholar 

  28. Guler, U.; Shalaev, V. M.; Boltasseva, A. Nanoparticle plasmonics: Going practical with transition metal nitrides. Mater. Today 2015, 18, 227–237.

    Article  CAS  Google Scholar 

  29. Manna, G.; Bose, R.; Pradhan, N. Semiconducting and plasmonic copper phosphide platelets. Angew. Chem., Int. Ed. 2013, 52, 6762–6766.

    Article  CAS  Google Scholar 

  30. Large, N.; Abb, M.; Aizpurua, J.; Muskens, O. L. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett. 2010, 10, 1741–1746.

    Article  CAS  Google Scholar 

  31. Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

    Article  CAS  Google Scholar 

  32. Balitskii, O. A.; Sytnyk, M.; Stangl, J.; Primetzhofer, D.; Groiss, H.; Heiss, W. Tuning the localized surface plasmon resonance in Cu2−xSe nanocrystals by postsynthetic ligand exchange. ACS Appl. Mater. Interfaces 2014, 6, 17770–17775.

    Article  CAS  Google Scholar 

  33. Nelson, A.; Ha, D. H.; Robinson, R. D. Selective etching of copper sulfide nanoparticles and heterostructures through sulfur abstraction: Phase transformations and optical properties. Chem. Mater. 2016, 28, 8530–8541.

    Article  CAS  Google Scholar 

  34. Xu, W.; Liu, H. C.; Zhou, D. L.; Chen, X.; Ding, N.; Song, H. W.; Ågren, H. Localized surface plasmon resonances in self-doped copper chalcogenide binary nanocrystals and their emerging applications. Nano Today 2020, 33, 100892.

    Article  CAS  Google Scholar 

  35. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  36. Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.

    Article  CAS  Google Scholar 

  37. Xia, X. H.; Zeng, J.; Oetjen, L. K.; Li, Q. G.; Xia, Y. N. Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J. Am. Chem. Soc. 2012, 134, 1793–1801.

    Article  CAS  Google Scholar 

  38. Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255–2261.

    Article  CAS  Google Scholar 

  39. Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

    Article  CAS  Google Scholar 

  40. Chen, S. H.; Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2002, 2, 1003–1007.

    Article  CAS  Google Scholar 

  41. Nehl, C. L.; Liao, H. W.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.

    Article  CAS  Google Scholar 

  42. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Käll, M.; Bryant, G. W.; de Abajo, F. J. G. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

    Article  CAS  Google Scholar 

  43. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

    Article  CAS  Google Scholar 

  44. Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–348.

    Article  CAS  Google Scholar 

  45. Ou, W. H.; Zou, Y.; Wang, K. W.; Gong, W. B.; Pei, R. J.; Chen, L. W.; Pan, Z. H.; Fu, D. D.; Huang, X.; Zhao, Y. F. et al. Active manipulation of NIR plasmonics: The case of Cu2−xSe through electrochemistry. J. Phys. Chem. Lett. 2018, 9, 274–280.

    Article  CAS  Google Scholar 

  46. Jain, P. K.; Manthiram, K.; Engel, J. H.; White, S. L.; Faucheaux, J. A.; Alivisatos, A. P. Doped nanocrystals as plasmonic probes of redox chemistry. Angew. Chem., Int. Ed. 2013, 52, 13671–13675.

    Article  CAS  Google Scholar 

  47. Wei, T. X.; Liu, Y. F.; Dong, W. J.; Zhang, Y.; Huang, C. Y.; Sun, Y.; Chen, X.; Dai, N. Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl. Mater. Interfaces 2013, 5, 10473–10477.

    Article  CAS  Google Scholar 

  48. Muhammed, M. A. H.; Döblinger, M.; Rodríguez-Fernández, J. Switching plasmons: Gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J. Am. Chem. Soc. 2015, 137, 11666–11677.

    Article  CAS  Google Scholar 

  49. Kim, Y.; Park, K. Y.; Jang, D. M.; Song, Y. M.; Kim, H. S.; Cho, Y. J.; Myung, Y.; Park, J. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Chem. C 2010, 114, 22141–22146.

    Article  CAS  Google Scholar 

  50. Zou, Y.; Sun, C.; Gong, W. B.; Yang, X. F.; Huang, X.; Yang, T.; Lu, W. B.; Jiang, J. Morphology-controlled synthesis of hybrid nanocrystals via a selenium-mediated strategy with ligand shielding effect: The case of dual plasmonic Au-Cu2−xSe. ACS Nano 2017, 11, 3776–3785.

    Article  CAS  Google Scholar 

  51. Shan, B. B.; Zhao, Y. W.; Li, Y. W.; Wang, H. T.; Chen, R.; Li, M. High-quality dual-plasmonic Au@Cu2−xSe nanocrescents with precise Cu2−xSe domain size control and tunable optical properties in the second near-infrared biowindow. Chem. Mater. 2019, 31, 9875–9886.

    Article  CAS  Google Scholar 

  52. Li, Y. Y.; Pan, G. M.; Liu, Q. Y.; Ma, L.; Xie, Y.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Coupling resonances of surface plasmon in gold nanorod/copper chalcogenide core-shell nanostructures and their enhanced photothermal effect. ChemPhysChem 2018, 19, 1852–1858.

    Article  CAS  Google Scholar 

  53. Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J. Am. Chem. Soc. 2018, 140, 5890–5894.

    Article  CAS  Google Scholar 

  54. Liu, X.; Lee, C.; Law, W. C.; Zhu, D. W.; Liu, M. X.; Jeon, M.; Kim, J.; Prasad, P. N.; Kim, C.; Swihart, M. T. Au-Cu2−xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013, 13, 4333–4339.

    Article  CAS  Google Scholar 

  55. Zhang, S. H.; Huang, Q.; Zhang, L. J.; Zhang, H.; Han, Y. B.; Sun, Q.; Cheng, Z. X.; Qin, H. Z.; Dou, S. X.; Li, Z. Vacancy engineering of Cu2−xSe nanoparticles with tunable LSPR and magnetism for dualmodal imaging guided photothermal therapy of cancer. Nanoscale 2018, 10, 3130–3143.

    Article  CAS  Google Scholar 

  56. Ji, M. W.; Xu, M.; Zhang, W.; Yang, Z. Z.; Huang, L.; Liu, J. J.; Zhang, Y.; Gu, L.; Yu, Y. X.; Hao, W. C. et al. Structurally well-defined Au@Cu2−xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater. 2016, 28, 3094–3101.

    Article  CAS  Google Scholar 

  57. Lv, Q.; Min, H.; Duan, D. B.; Fang, W.; Pan, G. M.; Shen, A. G.; Wang, Q. Q.; Nie, G. J.; Hu, J. M. Total aqueous synthesis of Au@Cu2−xS core-shell nanoparticles for in vitro and in vivo SERS/PA imaging-guided photothermal cancer therapy. Adv. Healthc. Mater. 2019, 8, 1801257.

    Google Scholar 

  58. Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

    Article  CAS  Google Scholar 

  59. Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R.; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. Monodisperse dual plasmonic Au@Cu2−xE (E = S, Se) core@shell Supraparticles: Aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 2017, 11, 8273–8281.

    Article  CAS  Google Scholar 

  60. Sun, M. Q.; Fu, X. Q.; Chen, K. X.; Wang, H. Dual-plasmonic gold@copper sulfide core-shell nanoparticles: Phase-selective synthesis and multimodal photothermal and photocatalytic behaviors. ACS Appl. Mater. Interfaces 2020, 12, 46146–46161.

    Article  CAS  Google Scholar 

  61. Ma, L.; Chen, Y. L.; Yang, X.; Li, H. X.; Ding, S. J.; Hou, H. Y.; Xiong, L.; Qin, P. L.; Chen, X. B. Growth behavior of Au/Cu2−xS hybrids and their plasmon-enhanced dual-functional catalytic activity. CrystEngComm 2019, 21, 5610–5617.

    Article  CAS  Google Scholar 

  62. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

  63. Liu, Y.; Zhu, D. W.; Hu, Y. J.; Swihart, M. T.; Wei, W. Controlled synthesis of Cu2−xSe nanoparticles as near-infrared photothermal agents and irradiation wavelength dependence of their photothermal conversion efficiency. Langmuir 2018, 34, 13905–13909.

    Article  CAS  Google Scholar 

  64. De Ruijter, W. J.; Sharma, R.; McCartney, M. R.; Smith, D. J. Measurement of lattice-fringe vectors from digital HREM images-experimental precision. Ultramicroscopy 1995, 57, 409–422.

    Article  CAS  Google Scholar 

  65. Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Startup Foundation (101112) and College of Science (COS) Seed Grant (181282) of George Mason University. We also acknowledged the Center for Nanoscale Science and Technology NanoFab at National Institute of Standards and Technology (NIST) for TEM technical support and helpful discussions. V.N. acknowledges financial support from the Presidential Distinguished Research Fellowship co-funded by the Graduate School and the College of Science at UTSA. This work received computational support from UTSA’s HPC cluster SHAMU, operated by the Office of Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jing.

Ethics declarations

The authors declare no competing financial interest.

Electronic Supplementary Material

12274_2021_3705_MOESM1_ESM.pdf

Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanchenko, M., Nooshnab, V., Myers, A.F. et al. Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures. Nano Res. 15, 1579–1586 (2022). https://doi.org/10.1007/s12274-021-3705-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3705-4

Keywords

Navigation