Skip to main content
Log in

NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions. In this work, we report an efficient and stable NiCo2S4/N, S co-doped reduced graphene oxide (NCS/NS-rGO) electrocatalyst for water splitting, in which NCS microspheres are composed of one-dimentional (1D) nanorods grown homogeneously on the surface of NS-rGOs). The synergetic effect, abundant active sites, and hybridization of NCS/NS-rGO endow their outstanding electrocatalytic performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both alkaline and neutral conditions. Furthermore, NCS/NS-rGO employed as both anode and cathode in a two-electrode alkaline and neutral system electrolyzers deliver 10 mA/cm2 with the low cell voltage of 1.58 V in alkaline and 1.91 V in neutral condition. These results illustrate the rational design of carbon-supported nickel-cobalt based bifunctional materials for practical water splitting over a wide pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. Y.; Yao, Y. D.; Zhang, H.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Zou, J. J. In situ-grown cobalt-iron phosphide-based integrated electrode for long-term water splitting under a large current density at the industrial electrolysis temperature. ACS Sustain. Chem. Eng. 2020, 8, 17828–17838.

    Article  CAS  Google Scholar 

  2. Yu, C. L.; Hao, S. Y.; Lei, L. C.; Zhang, X. W. Synthesis of NiCo alloy nanoparticle-decorated B,N-doped carbon nanosheet networks via a self-template strategy for bifunctional oxygen-involving reactions. ACS Sustain. Chem. Eng. 2019, 7, 14394–14399.

    Article  CAS  Google Scholar 

  3. Li, P. P.; Zhao, R. B.; Chen, H. Y.; Wang, H. B.; Wei, P. P.; Huang, H.; Liu, Q.; Li, T. S.; Shi, X. F.; Zhang, Y. Y. et al. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 2019, 15, 1805103.

    Article  Google Scholar 

  4. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  CAS  Google Scholar 

  5. Liu, P. F.; Yang, S.; Zhang, B.; Yang, H. G. Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 34474–34481.

    Article  CAS  Google Scholar 

  6. Wang, L. K.; Tang, Z. H.; Yan, W.; Wang, Q. N.; Yang, H. Y.; Chen, S. W. Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power Sources 2017, 343, 458–466.

    Article  CAS  Google Scholar 

  7. Long, X.; Li, G. X.; Wang, Z. L.; Zhu, H. Y.; Zhang, T.; Xiao, S.; Guo, W. Y.; Yang, S. H. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 2015, 137, 11900–11903.

    Article  CAS  Google Scholar 

  8. Dong, Y.; Oloman, C. W.; Gyenge, E. L.; Su, J. W.; Chen, L. Transition metal based heterogeneous electrocatalysts for the oxygen evolution reaction at near-neutral pH. Nanoscale 2020, 12, 9924–9934.

    Article  CAS  Google Scholar 

  9. Feng, X. T.; Jiao, Q. Z.; Cui, H. R.; Yin, M. M.; Li, Q.; Zhao, Y.; Li, H. S.; Zhou, W.; Feng, C. H. One-pot synthesis of NiCo2S4 hollow spheres via sequential ion exchange as an enhanced oxygen bifunctional electrocatalyst in alkaline solution. ACS Appl. Mater. Interfaces 2018, 10, 29521–29531.

    Article  CAS  Google Scholar 

  10. Li, X. X.; Wang, X. T.; Xiao, K.; Ouyang, T.; Li, N.; Liu, Z. Q. In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting. J. Power Sources 2018, 402, 116–123.

    Article  CAS  Google Scholar 

  11. Lin, J.; Dai, X.; Liang, X.; Chen, D.; Zheng, X.; Li, Y.; Deng, Y.; Du, H.; Ye, Y.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiO, hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

    Article  CAS  Google Scholar 

  12. Zhu, Y. Y.; An, S. L.; Sun, X. J.; Lan, D. W.; Cui, J. L.; Zhang, Y. Q.; He, W. X. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance. Chem. Eng. J. 2020, 383, 123206.

    Article  CAS  Google Scholar 

  13. Lai, F. L.; Feng, J. R.; Heil, T.; Tian, Z. H.; Schmidt, J.; Wang, G. C.; Oschatz, M. Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors. J. Mater. Chem. A 2019, 7, 19342–19347.

    Article  CAS  Google Scholar 

  14. Ning, Y. Y.; Ma, D. D.; Shen, Y.; Wang, F. M.; Zhang, X. B. Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media. Electrochim. Acta 2018, 265, 19–31.

    Article  CAS  Google Scholar 

  15. Li, D.; Liu, Z.; Wang, J. R.; Liu, B. P.; Qin, Y. C.; Yang, W. R.; Liu, J. Q. Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting. Electrochim. Acta 2020, 340, 135957.

    Article  CAS  Google Scholar 

  16. Li, F.; Xu, R. C.; Li, Y. M.; Liang, F.; Zhang, D. F.; Fu, W. F.; Lv, X. J. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 2019, 145, 521–528.

    Article  CAS  Google Scholar 

  17. Xu, J. C.; Rong, J.; Qiu, F. X.; Zhu, Y.; Mao, K. L.; Fang, Y. Y.; Yang, D. Y.; Zhang, T. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 555, 294–303.

    Article  CAS  Google Scholar 

  18. Du, X. Q.; Lian, W. Z.; Zhang, X. S. Homogeneous core-shell NiCo2S4 nanorods as flexible electrode for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 20627–20635.

    Article  CAS  Google Scholar 

  19. Miao, Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041–3047.

    Article  CAS  Google Scholar 

  20. Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

    Article  CAS  Google Scholar 

  21. Yu, J. H.; Yu, C.; Guo, W.; Wang, Z.; Li, S. F.; Chang, J. W.; Tan, X. Y.; Ding, Y. W.; Zhang, M. D.; Yang, L. et al. Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy 2019, 64, 103921.

    Article  CAS  Google Scholar 

  22. Li, J.; Wang, Y. C.; Zhou, T.; Zhang, H.; Sun, X. H.; Tang, J.; Zhang, L. J.; Al-Enizi, A. M.; Yang, Z. Q.; Zheng, G. F. Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14305–14312.

    Article  CAS  Google Scholar 

  23. Wang, Z. J.; Nengzi, L. C.; Zhang, X. Y.; Zhao, Z. J.; Cheng, X. W. Novel NiCo2S4/CS membranes as efficient catalysts for activating persulfate and its high activity for degradation of nimesulide. Chem. Eng. J 2020, 381, 122517.

    Article  CAS  Google Scholar 

  24. Luan, Y. T.; Zhang, H. N.; Yang, F.; Yan, J.; Zhu, K.; Ye, K.; Wang, G. L.; Cheng, K.; Cao, D. X. Rational design of NiCo2S4 nanoparticles@N-doped CNT for hybrid supercapacitor. Appl. Surf. Sci. 2018, 447, 165–172.

    Article  CAS  Google Scholar 

  25. Tian, G. L.; Zhao, M. Q.; Yu, D. S.; Kong, X. Y.; Huang, J. Q.; Zhang, Q.; Wei, F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 2014, 10, 2251–2259.

    Article  CAS  Google Scholar 

  26. Men, S.; Zheng, H.; Ma, D. J.; Huang, X. L.; Kang, X. W. Unraveling the stabilization mechanism of solid electrolyte interface on ZnSe by rGO in sodium ion battery. J. Energy Chem. 2021, 54, 124–130.

    Article  Google Scholar 

  27. Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.

    Article  CAS  Google Scholar 

  28. Zakaria, M. B.; Zheng, D. H.; Apfel, U. P.; Nagata, T.; Kenawy, E. R. S.; Lin, J. J. Dual-heteroatom-doped reduced graphene oxide sheets conjoined CoNi-based carbide and sulfide nanoparticles for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 40186–40193.

    Article  CAS  Google Scholar 

  29. Niu, Y. L.; Huang, X. Q.; Zhao, L.; Hu, W. H.; Li, C. M. One-pot synthesis of Co/CoFe2O4 nanoparticles supported on N-doped graphene for efficient bifunctional oxygen electrocatalysis. ACS Sustain. Chem. Eng. 2018, 6, 3556–3564.

    Article  CAS  Google Scholar 

  30. Yu, C.; Yang, J.; Zhao, C. T.; Fan, X. M.; Wang, G.; Qiu, J. S. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: Understanding the role of nano-structured carbon. Nanoscale 2014, 6, 3097–3104.

    Article  CAS  Google Scholar 

  31. Fu, H. H.; Liu, Y.; Chen, L.; Shi, Y. L.; Kong, W. W.; Hou, J.; Yu, F.; Wei, T. T.; Wang, H.; Guo, X. H. Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2019, 296, 719–729.

    Article  CAS  Google Scholar 

  32. Tran Duy, T.; Chuong, N. D.; Balamurugan, J.; Van Hien, H.; Kim, N. H.; Lee, J. H. Porous hollow-structured LaNiO3 stabilized N,S-codoped graphene as an active electrocatalyst for oxygen reduction reaction. Small 2017, 13, 1701884.

    Article  Google Scholar 

  33. Xu, J. X.; Yang, Y.; Chu, H.; Tang, J. H.; Ge, Y. C.; Shen, J. F.; Ye, M. X. Novel NiCo2S4@reduced graphene oxide@carbon nanotube nanocomposites for high performance supercapacitors. RSC Adv. 2016, 6, 100504–100510.

    Article  CAS  Google Scholar 

  34. Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.

    Article  CAS  Google Scholar 

  35. Chiu, C. T.; Chen, D. H. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnology 2018, 29, 175602.

    Article  Google Scholar 

  36. Feng, X. T.; Jiao, Q. Z.; Li, Q.; Shi, Q.; Dai, Z.; Zhao, Y.; Li, H. S.; Feng, C. H.; Zhou, W.; Feng, T. Y. NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. Electrochim. Acta 2020, 331, 135356.

    Article  CAS  Google Scholar 

  37. Wang, F. P.; Li, G. F.; Zhou, Q. Q.; Zheng, J. F.; Yang, C. X.; Wang, Q. Z. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl. Surf. Sci. 2017, 425, 180–187.

    Article  CAS  Google Scholar 

  38. Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

    Article  CAS  Google Scholar 

  39. Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708–5717.

    Article  CAS  Google Scholar 

  40. Yang, G.; Choi, W.; Pu, X.; Yu, C. Scalable synthesis of Bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C-N-Fe coordination for oxygen reduction reaction. Energy Environ. Sci. 2015, 8, 1799–1807.

    Article  CAS  Google Scholar 

  41. Zhao, X. L.; Li, F.; Wang, R. N.; Seo, J. M.; Choi, H. J.; Jung, S. M.; Mahmood, J.; Jeon, I. Y.; Baek, J. B. Controlled fabrication of hierarchically structured nitrogen-doped carbon nanotubes as a highly active bifunctional oxygen electrocatalyst. Adv. Funct. Mater. 2017, 27, 1605717.

    Article  Google Scholar 

  42. Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

    Article  Google Scholar 

  43. Wu, J. H.; Dou, S.; Shen, A. L.; Wang, X.; Ma, Z. L.; Ouyang, C. B.; Wang, S. Y. One-step hydrothermal synthesis of NiCo2S4-rGO as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 20990–20995.

    Article  CAS  Google Scholar 

  44. Yang, S. S.; Wang, Y. W.; Zhang, H. J.; Zhang, Y.; Liu, L.; Fang, L.; Yang, X. H.; Gu, X.; Wang, Y. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J. Catal. 2019, 371, 20–26.

    Article  CAS  Google Scholar 

  45. Dou, Y. H.; Xu, J. T.; Ruan, B. Y.; Liu, Q. N.; Pan, Y. D.; Sun, Z. Q.; Dou, S. X. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1501835.

    Article  Google Scholar 

  46. Liu, Y.; Su, D.; Sang, Z. Y.; Su, X. H.; Chen, H.; Yan, X. Highperformance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochim. Acta 2019, 328, 135088.

    Article  CAS  Google Scholar 

  47. Li, S. Y.; Wang, T.; Zhu, W. Q.; Lian, J. B.; Huang, Y. P.; Yu, Y. Y.; Qiu, J. X.; Zhao, Y.; Yong, Y. C.; Li, H. M. Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 693–703.

    Article  Google Scholar 

  48. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  Google Scholar 

  49. Li, H. Q.; Chen, L.; Jin, P. F.; Lv, H.; Fu, H. H.; Fan, C. C.; Peng, S. L.; Wang, G.; Hou, J.; Yu, F. et al. Synthesis of Co2−xO2 (0 < x< 1. 0) hexagonal nanostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalton Trans. 2020, 49, 6587–6595.

    Article  CAS  Google Scholar 

  50. Pehlivan, İ. B.; Arvizu, M. A.; Qiu, Z.; Niklasson, G. A.; Edvinsson, T. Impedance spectroscopy modeling of nickel-molybdenum alloys on porous and flat substrates for applications in water splitting. J. Phys. Chem. C 2019, 123, 23890–23897.

    Article  CAS  Google Scholar 

  51. Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.

    Article  Google Scholar 

  52. Chien, H. C.; Cheng, W. Y.; Wang, Y. H.; Wei, T. Y.; Lu, S. Y. Ultralow overpotentials for oxygen evolution reactions achieved by nickel cobaltite aerogels. J. Mater. Chem. 2011, 21, 18180–18182.

    Article  CAS  Google Scholar 

  53. Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

    Article  CAS  Google Scholar 

  54. Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019, 4, 1260–1264.

    Article  CAS  Google Scholar 

  55. Yu, M. Q.; Li, Y. H.; Yang, S.; Liu, P. F.; Pan, L. F.; Zhang, L.; Yang, H. G. Mn3O4 nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst. J. Mater. Chem. A 2015, 3, 14101–14104.

    Article  CAS  Google Scholar 

  56. Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

    Article  CAS  Google Scholar 

  57. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  CAS  Google Scholar 

  58. Anantharaj, S.; Karthik, P. E.; Kundu, S. Petal-like hierarchical array of ultrathin Ni(OH)(2) nanosheets decorated with Ni(OH)(2) nanoburls: A highly efficient oer electrocatalyst. Catal. Sci. Technol. 2017, 7, 882–893.

    Article  CAS  Google Scholar 

  59. Kim, B.; Oh, A.; Kabiraz, M. K.; Hong, Y.; Joo, J.; Baik, H.; Choi, S. I.; Lee, K. NiOOH exfoliation-free nickel octahedra as highly active and durable electrocatalysts toward the oxygen evolution reaction in an alkaline electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 10115–10122.

    Article  CAS  Google Scholar 

  60. Xie, Y. M.; Zhao, B.; Tang, K.; Qin, W.; Tan, C. H.; Yao, J. J.; Li, Y. Y.; Jiang, L.; Wang, X. F.; Sun, Y. H. In-situ phase transition induced nanoheterostructure for overall water splitting. Chem. Eng. J. 2021, 409, 128156.

    Article  CAS  Google Scholar 

  61. Menezes, P. W.; Yao, S. L.; Beltrán-Suito, R.; Hausmann, J. N.; Menezes, P. V.; Driess, M. Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem., Int. Ed. 2021, 60, 4640–4647.

    Article  CAS  Google Scholar 

  62. Yan, W. X.; Shen, Y. L.; An, C.; Li, L. N.; Si, R.; An, C. H. FeOxclusters decorated hcp Ni nanosheets as inverse electrocatalyst to stimulate excellent oxygen evolution performance. Appl. Catal. B: Environ. 2021, 284, 119687.

    Article  CAS  Google Scholar 

  63. Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.

    Article  CAS  Google Scholar 

  64. Wu, Z. C.; Zou, Z. X.; Huang, J. S.; Gao, F. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 2018, 358, 243–252.

    Article  CAS  Google Scholar 

  65. Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

    Article  CAS  Google Scholar 

  66. Kumar, A.; Bhattacharyya, S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Appl. Mater. Interfaces 2017, 9, 41906–41915.

    Article  CAS  Google Scholar 

  67. Zeng, L. Y.; Sun, K. A.; Chen, Y. J.; Liu, Z.; Chen, Y. J.; Pan, Y.; Zhao, R. Y.; Liu, Y. Q.; Liu, C. G. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. J. Mater. Chem. A 2019, 7, 16793–16802.

    Article  CAS  Google Scholar 

  68. Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y. R.; Zheng, X. S.; Zhu, J. F.; Gao, M. R.; Yu, S. H. A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem., Int. Ed. 2018, 57, 15445–15449.

    Article  CAS  Google Scholar 

  69. Li, K. D.; Zhang, J. F.; Wu, R.; Yu, Y. F.; Zhang, B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv. Sci. 2016, 3, 1500426.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51962032, 61704114, and 51764049), the Youth Innovative Talents Cultivation Fund, Shihezi University (No. KX01480109), and the Opening Project of The Research Center for Material Chemical Engineering Technology of Xinjiang Bingtuan (No. 2017BTRC007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Chen, Shanglong Peng or Yulin Shi.

Electronic supplementary material

12274_2021_3580_MOESM1_ESM.pdf

NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, L., Jin, P. et al. NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Res. 15, 950–958 (2022). https://doi.org/10.1007/s12274-021-3580-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3580-z

Keywords

Navigation